Matches in SemOpenAlex for { <https://semopenalex.org/work/W2295060950> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2295060950 abstract "The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet)more » in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.« less" @default.
- W2295060950 created "2016-06-24" @default.
- W2295060950 creator A5029093609 @default.
- W2295060950 creator A5031328167 @default.
- W2295060950 creator A5036188745 @default.
- W2295060950 creator A5038477524 @default.
- W2295060950 creator A5040879694 @default.
- W2295060950 creator A5050657686 @default.
- W2295060950 creator A5086997645 @default.
- W2295060950 date "2009-03-30" @default.
- W2295060950 modified "2023-09-27" @default.
- W2295060950 title "Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency" @default.
- W2295060950 cites W1480845942 @default.
- W2295060950 cites W1519996729 @default.
- W2295060950 cites W1535403578 @default.
- W2295060950 cites W1589405126 @default.
- W2295060950 cites W1593281036 @default.
- W2295060950 cites W1973738304 @default.
- W2295060950 cites W2011524278 @default.
- W2295060950 cites W2048998010 @default.
- W2295060950 cites W2153504909 @default.
- W2295060950 cites W2244148919 @default.
- W2295060950 cites W2273735696 @default.
- W2295060950 cites W2276819364 @default.
- W2295060950 doi "https://doi.org/10.2172/1044058" @default.
- W2295060950 hasPublicationYear "2009" @default.
- W2295060950 type Work @default.
- W2295060950 sameAs 2295060950 @default.
- W2295060950 citedByCount "1" @default.
- W2295060950 crossrefType "report" @default.
- W2295060950 hasAuthorship W2295060950A5029093609 @default.
- W2295060950 hasAuthorship W2295060950A5031328167 @default.
- W2295060950 hasAuthorship W2295060950A5036188745 @default.
- W2295060950 hasAuthorship W2295060950A5038477524 @default.
- W2295060950 hasAuthorship W2295060950A5040879694 @default.
- W2295060950 hasAuthorship W2295060950A5050657686 @default.
- W2295060950 hasAuthorship W2295060950A5086997645 @default.
- W2295060950 hasBestOaLocation W22950609503 @default.
- W2295060950 hasConcept C105923489 @default.
- W2295060950 hasConcept C106169591 @default.
- W2295060950 hasConcept C127413603 @default.
- W2295060950 hasConcept C132646400 @default.
- W2295060950 hasConcept C171146098 @default.
- W2295060950 hasConcept C178790620 @default.
- W2295060950 hasConcept C185592680 @default.
- W2295060950 hasConcept C21880701 @default.
- W2295060950 hasConcept C39432304 @default.
- W2295060950 hasConcept C548081761 @default.
- W2295060950 hasConceptScore W2295060950C105923489 @default.
- W2295060950 hasConceptScore W2295060950C106169591 @default.
- W2295060950 hasConceptScore W2295060950C127413603 @default.
- W2295060950 hasConceptScore W2295060950C132646400 @default.
- W2295060950 hasConceptScore W2295060950C171146098 @default.
- W2295060950 hasConceptScore W2295060950C178790620 @default.
- W2295060950 hasConceptScore W2295060950C185592680 @default.
- W2295060950 hasConceptScore W2295060950C21880701 @default.
- W2295060950 hasConceptScore W2295060950C39432304 @default.
- W2295060950 hasConceptScore W2295060950C548081761 @default.
- W2295060950 hasLocation W22950609501 @default.
- W2295060950 hasLocation W22950609502 @default.
- W2295060950 hasLocation W22950609503 @default.
- W2295060950 hasOpenAccess W2295060950 @default.
- W2295060950 hasPrimaryLocation W22950609501 @default.
- W2295060950 hasRelatedWork W2055324378 @default.
- W2295060950 hasRelatedWork W2130999048 @default.
- W2295060950 hasRelatedWork W2325231973 @default.
- W2295060950 hasRelatedWork W2350810382 @default.
- W2295060950 hasRelatedWork W2362406102 @default.
- W2295060950 hasRelatedWork W2381582688 @default.
- W2295060950 hasRelatedWork W2387601773 @default.
- W2295060950 hasRelatedWork W2899084033 @default.
- W2295060950 hasRelatedWork W38138138 @default.
- W2295060950 hasRelatedWork W4232004012 @default.
- W2295060950 isParatext "false" @default.
- W2295060950 isRetracted "false" @default.
- W2295060950 magId "2295060950" @default.
- W2295060950 workType "report" @default.