Matches in SemOpenAlex for { <https://semopenalex.org/work/W2295511148> ?p ?o ?g. }
- W2295511148 endingPage "14" @default.
- W2295511148 startingPage "1" @default.
- W2295511148 abstract "This paper proposes a new method for the detection of vegetation in LiDAR data. As vegetation points are characterised by non-linear distributions, they are efficiently recognised based-on large errors obtained when applying the local fitting of planar surfaces. In addition, three contextual filters are introduced capable of dealing with those exceptions that do not conform with previous interpretations. Namely, they are designed for detecting overgrowing vegetation, small objects attached to the planar surfaces (such as balconies, chimneys, and noise within the buildings) and small objects that do not belong to vegetation (vehicles, statues, fences). During the validation, the proposed method achieved over 97% correctness as well as completeness of vegetation recognition in rural areas while its average accuracy in urban settings was 90.7% in terms of F1-scores. The method uses only three input parameters and allows for efficient compensation between completeness and correctness, without significantly affecting the F1-score. Sensitivity analysis of the method also confirmed the robustness against a sub-optimal definition of the input parameters." @default.
- W2295511148 created "2016-06-24" @default.
- W2295511148 creator A5008666972 @default.
- W2295511148 creator A5033782481 @default.
- W2295511148 creator A5040931576 @default.
- W2295511148 date "2016-06-01" @default.
- W2295511148 modified "2023-10-16" @default.
- W2295511148 title "Context-dependent detection of non-linearly distributed points for vegetation classification in airborne LiDAR" @default.
- W2295511148 cites W1436861582 @default.
- W2295511148 cites W1965244720 @default.
- W2295511148 cites W1968936982 @default.
- W2295511148 cites W1969935516 @default.
- W2295511148 cites W1973644502 @default.
- W2295511148 cites W1980319608 @default.
- W2295511148 cites W1988696756 @default.
- W2295511148 cites W1990077509 @default.
- W2295511148 cites W1998970860 @default.
- W2295511148 cites W2002275473 @default.
- W2295511148 cites W2008072358 @default.
- W2295511148 cites W2008683230 @default.
- W2295511148 cites W2010980358 @default.
- W2295511148 cites W2011938923 @default.
- W2295511148 cites W2011995649 @default.
- W2295511148 cites W2017181080 @default.
- W2295511148 cites W2028901390 @default.
- W2295511148 cites W2032413422 @default.
- W2295511148 cites W2032729760 @default.
- W2295511148 cites W2037282532 @default.
- W2295511148 cites W2040861824 @default.
- W2295511148 cites W2043462872 @default.
- W2295511148 cites W2048925558 @default.
- W2295511148 cites W2056769281 @default.
- W2295511148 cites W2062682676 @default.
- W2295511148 cites W2063396028 @default.
- W2295511148 cites W2064401771 @default.
- W2295511148 cites W2065925762 @default.
- W2295511148 cites W2069959013 @default.
- W2295511148 cites W2080157231 @default.
- W2295511148 cites W2080398571 @default.
- W2295511148 cites W2083187693 @default.
- W2295511148 cites W2086103748 @default.
- W2295511148 cites W2086581980 @default.
- W2295511148 cites W2091168295 @default.
- W2295511148 cites W2094139773 @default.
- W2295511148 cites W2105607907 @default.
- W2295511148 cites W2136216165 @default.
- W2295511148 cites W2136280819 @default.
- W2295511148 cites W2137199188 @default.
- W2295511148 doi "https://doi.org/10.1016/j.isprsjprs.2016.02.011" @default.
- W2295511148 hasPublicationYear "2016" @default.
- W2295511148 type Work @default.
- W2295511148 sameAs 2295511148 @default.
- W2295511148 citedByCount "34" @default.
- W2295511148 countsByYear W22955111482016 @default.
- W2295511148 countsByYear W22955111482017 @default.
- W2295511148 countsByYear W22955111482018 @default.
- W2295511148 countsByYear W22955111482019 @default.
- W2295511148 countsByYear W22955111482020 @default.
- W2295511148 countsByYear W22955111482021 @default.
- W2295511148 countsByYear W22955111482022 @default.
- W2295511148 countsByYear W22955111482023 @default.
- W2295511148 crossrefType "journal-article" @default.
- W2295511148 hasAuthorship W2295511148A5008666972 @default.
- W2295511148 hasAuthorship W2295511148A5033782481 @default.
- W2295511148 hasAuthorship W2295511148A5040931576 @default.
- W2295511148 hasConcept C104317684 @default.
- W2295511148 hasConcept C11413529 @default.
- W2295511148 hasConcept C115961682 @default.
- W2295511148 hasConcept C121684516 @default.
- W2295511148 hasConcept C124101348 @default.
- W2295511148 hasConcept C134306372 @default.
- W2295511148 hasConcept C134786449 @default.
- W2295511148 hasConcept C142724271 @default.
- W2295511148 hasConcept C153180895 @default.
- W2295511148 hasConcept C154945302 @default.
- W2295511148 hasConcept C166957645 @default.
- W2295511148 hasConcept C17231256 @default.
- W2295511148 hasConcept C185592680 @default.
- W2295511148 hasConcept C205649164 @default.
- W2295511148 hasConcept C2776133958 @default.
- W2295511148 hasConcept C2779343474 @default.
- W2295511148 hasConcept C31972630 @default.
- W2295511148 hasConcept C33923547 @default.
- W2295511148 hasConcept C41008148 @default.
- W2295511148 hasConcept C51399673 @default.
- W2295511148 hasConcept C55439883 @default.
- W2295511148 hasConcept C55493867 @default.
- W2295511148 hasConcept C62649853 @default.
- W2295511148 hasConcept C63479239 @default.
- W2295511148 hasConcept C71924100 @default.
- W2295511148 hasConcept C99498987 @default.
- W2295511148 hasConceptScore W2295511148C104317684 @default.
- W2295511148 hasConceptScore W2295511148C11413529 @default.
- W2295511148 hasConceptScore W2295511148C115961682 @default.
- W2295511148 hasConceptScore W2295511148C121684516 @default.
- W2295511148 hasConceptScore W2295511148C124101348 @default.
- W2295511148 hasConceptScore W2295511148C134306372 @default.
- W2295511148 hasConceptScore W2295511148C134786449 @default.