Matches in SemOpenAlex for { <https://semopenalex.org/work/W2295520983> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2295520983 abstract "Crude oil distillation is an energy intensive and environmentally challenging process. To decrease the large energy demand of crude oil distillation, heat integration is implemented. The system (i.e. distillation unit and heat exchanger network, HEN) needs to perform an energy-efficient separation in a broad range of scenarios (e.g. changes in product yields or product specifications), without compromising overall profit. Operational optimisation and revamp projects are frequently implemented to adapt an existing system to such diverse scenarios.The present work provides a new approach for optimising crude oil distillation systems. The scope of this methodology consists of: 1) finding the operating conditions for the distillation system that maximise net profit, while 2) proposing retrofit modifications for the HEN that allow a feasible operation. Artificial neural networks (ANN) are used to represent the distillation process. In the proposed modelling strategy, results of rigorous simulations provide the data used to train the ANN models. The resulting ANN models have the advantages of overcoming convergence problems presented by both rigorous and simplified models, of handling fewer variables and performing calculations in less time.The HEN models used in this work consist of a retrofit model and a simulation model. The HEN retrofit model employed by Chen (2008) is extended to include constraints on heat transfer areas, utility consumption; and to optimise stream split fractions. In addition, the segmented linear data used by Chen (2008) to calculate temperature-dependent heat capacities are replaced by models tailor-made for each stream. This allows a more flexible and accurate representation of these properties, compared to the approach of Chen (2008). The HEN simulation model of de Oliveira Filho et al. (2007) is modified and extended in this work to simulate simple unit operations and to consider heat exchangers specified in terms of heat loads.Distillation, HEN and economic models are implemented in a two-level optimisation framework. The first level consists of a simulated annealing algorithm that optimises the operating conditions of the distillation unit (e.g. flow rates of products and stripping steam, pump-around duties and temperature drops, furnace exit temperature) and HEN topology (i.e. number and location of heat exchangers and stream splitters). The second level solves a non-linear least squares problem that addresses the violation of HEN constraints. Different objective functions can be considered, such as maximising net profit or minimising total annualised costs.The case studies presented in this work show that ANN models are suitable for their implementation in optimisation methodologies for crude oil distillation systems. Results indicate that interactions between the distillation process and HEN are captured, and that significant economic improvements can be achieved with the proposed optimisation approach." @default.
- W2295520983 created "2016-06-24" @default.
- W2295520983 creator A5019227894 @default.
- W2295520983 date "2014-10-22" @default.
- W2295520983 modified "2023-09-23" @default.
- W2295520983 title "Optimisation of Existing Heat-Integrated Crude Oil Distillation Systems" @default.
- W2295520983 cites W2056760934 @default.
- W2295520983 cites W2068614695 @default.
- W2295520983 hasPublicationYear "2014" @default.
- W2295520983 type Work @default.
- W2295520983 sameAs 2295520983 @default.
- W2295520983 citedByCount "0" @default.
- W2295520983 crossrefType "dissertation" @default.
- W2295520983 hasAuthorship W2295520983A5019227894 @default.
- W2295520983 hasConcept C107706546 @default.
- W2295520983 hasConcept C111919701 @default.
- W2295520983 hasConcept C127413603 @default.
- W2295520983 hasConcept C154945302 @default.
- W2295520983 hasConcept C178790620 @default.
- W2295520983 hasConcept C185592680 @default.
- W2295520983 hasConcept C204030448 @default.
- W2295520983 hasConcept C21880701 @default.
- W2295520983 hasConcept C41008148 @default.
- W2295520983 hasConcept C50644808 @default.
- W2295520983 hasConcept C54725748 @default.
- W2295520983 hasConcept C78519656 @default.
- W2295520983 hasConcept C98045186 @default.
- W2295520983 hasConceptScore W2295520983C107706546 @default.
- W2295520983 hasConceptScore W2295520983C111919701 @default.
- W2295520983 hasConceptScore W2295520983C127413603 @default.
- W2295520983 hasConceptScore W2295520983C154945302 @default.
- W2295520983 hasConceptScore W2295520983C178790620 @default.
- W2295520983 hasConceptScore W2295520983C185592680 @default.
- W2295520983 hasConceptScore W2295520983C204030448 @default.
- W2295520983 hasConceptScore W2295520983C21880701 @default.
- W2295520983 hasConceptScore W2295520983C41008148 @default.
- W2295520983 hasConceptScore W2295520983C50644808 @default.
- W2295520983 hasConceptScore W2295520983C54725748 @default.
- W2295520983 hasConceptScore W2295520983C78519656 @default.
- W2295520983 hasConceptScore W2295520983C98045186 @default.
- W2295520983 hasLocation W22955209831 @default.
- W2295520983 hasOpenAccess W2295520983 @default.
- W2295520983 hasPrimaryLocation W22955209831 @default.
- W2295520983 hasRelatedWork W1779428545 @default.
- W2295520983 hasRelatedWork W1983385439 @default.
- W2295520983 hasRelatedWork W2035185834 @default.
- W2295520983 hasRelatedWork W2118444958 @default.
- W2295520983 hasRelatedWork W2168131043 @default.
- W2295520983 hasRelatedWork W2209109591 @default.
- W2295520983 hasRelatedWork W2335781652 @default.
- W2295520983 hasRelatedWork W2761980549 @default.
- W2295520983 hasRelatedWork W2767691228 @default.
- W2295520983 hasRelatedWork W2793177228 @default.
- W2295520983 hasRelatedWork W2795431230 @default.
- W2295520983 hasRelatedWork W2810740713 @default.
- W2295520983 hasRelatedWork W2887425761 @default.
- W2295520983 hasRelatedWork W2901105605 @default.
- W2295520983 hasRelatedWork W3088262163 @default.
- W2295520983 hasRelatedWork W3213795663 @default.
- W2295520983 hasRelatedWork W53795744 @default.
- W2295520983 hasRelatedWork W954672866 @default.
- W2295520983 hasRelatedWork W2395009083 @default.
- W2295520983 hasRelatedWork W2531098503 @default.
- W2295520983 isParatext "false" @default.
- W2295520983 isRetracted "false" @default.
- W2295520983 magId "2295520983" @default.
- W2295520983 workType "dissertation" @default.