Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296003088> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2296003088 endingPage "595" @default.
- W2296003088 startingPage "567" @default.
- W2296003088 abstract "$ newcommand{eee}{mathrm e} %% ToC edit: macro added for e=2.71... $ A classic theorem by Vizing asserts that if the maximum degree of a graph is $Delta$, then it is possible to color its edges, in polynomial time, using at most $Delta+1$ colors. However, this algorithm is offline, i.e., it assumes the whole graph is known in advance. A natural question then is how well we can do in the online setting, where the edges of the graph are revealed one by one, and we need to color each edge as soon as it is added to the graph. Online edge coloring has an important application in fast switch scheduling. A natural model is that edges arrive online, but in a random permutation. Even in the random permutation model, the best proven approximation factor for any algorithm is the factor 2 of the simple greedy algorithm (which holds even in the worst-case online model). The algorithm of Aggarwal et al. (FOCS'03) provides a 1+o(1) factor algorithm for the case of very dense multi-graphs, when $Delta=omega(n^{2})$, where $n$ is the number of vertices. In this paper, we show that for graphs with $Delta=omega(log: n)$, it is possible to color the graph with $left(1 + frac{eee}{eee^2-1}+o(1)right)Delta leq 1.43Delta$ colors, with high probability, in the online random-order model. Our algorithm is inspired by a 1.6-approximate distributed offline algorithm of Panconesi and Srinivasan (PODC'92), which we extend by reusing failed colors online. Further, we show how we can extend the algorithm to reuse colors multiple times, which reduces the approximation factor below 1.43. We conjecture that the algorithm becomes nearly optimal (i.e., uses $Delta + o(Delta)$ colors) with $O(log{(Delta/log{n})})$ reuses. We reduce the question to proving the non-negativity of a certain recursively defined sequence, which looks true in computer simulations. This non-negativity can be proved explicitly for a small number of reuses, giving improved algorithms: e.g., the algorithm which reuses colors 5 times uses $1.26Delta$ colors. A preliminary version of this paper appeared in the Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010)." @default.
- W2296003088 created "2016-06-24" @default.
- W2296003088 creator A5037687249 @default.
- W2296003088 creator A5049715071 @default.
- W2296003088 creator A5075894805 @default.
- W2296003088 date "2012-01-01" @default.
- W2296003088 modified "2023-10-16" @default.
- W2296003088 cites W1965765215 @default.
- W2296003088 cites W1989274820 @default.
- W2296003088 cites W2052354487 @default.
- W2296003088 cites W2082903339 @default.
- W2296003088 doi "https://doi.org/10.4086/toc.2012.v008a025" @default.
- W2296003088 hasPublicationYear "2012" @default.
- W2296003088 type Work @default.
- W2296003088 sameAs 2296003088 @default.
- W2296003088 citedByCount "6" @default.
- W2296003088 countsByYear W22960030882015 @default.
- W2296003088 countsByYear W22960030882019 @default.
- W2296003088 countsByYear W22960030882020 @default.
- W2296003088 countsByYear W22960030882021 @default.
- W2296003088 countsByYear W22960030882022 @default.
- W2296003088 crossrefType "journal-article" @default.
- W2296003088 hasAuthorship W2296003088A5037687249 @default.
- W2296003088 hasAuthorship W2296003088A5049715071 @default.
- W2296003088 hasAuthorship W2296003088A5075894805 @default.
- W2296003088 hasBestOaLocation W22960030881 @default.
- W2296003088 hasConcept C114614502 @default.
- W2296003088 hasConcept C118615104 @default.
- W2296003088 hasConcept C121332964 @default.
- W2296003088 hasConcept C123809776 @default.
- W2296003088 hasConcept C132525143 @default.
- W2296003088 hasConcept C149530733 @default.
- W2296003088 hasConcept C203776342 @default.
- W2296003088 hasConcept C21308566 @default.
- W2296003088 hasConcept C24890656 @default.
- W2296003088 hasConcept C2779557605 @default.
- W2296003088 hasConcept C33923547 @default.
- W2296003088 hasConcept C47458327 @default.
- W2296003088 hasConcept C62520636 @default.
- W2296003088 hasConcept C63553672 @default.
- W2296003088 hasConceptScore W2296003088C114614502 @default.
- W2296003088 hasConceptScore W2296003088C118615104 @default.
- W2296003088 hasConceptScore W2296003088C121332964 @default.
- W2296003088 hasConceptScore W2296003088C123809776 @default.
- W2296003088 hasConceptScore W2296003088C132525143 @default.
- W2296003088 hasConceptScore W2296003088C149530733 @default.
- W2296003088 hasConceptScore W2296003088C203776342 @default.
- W2296003088 hasConceptScore W2296003088C21308566 @default.
- W2296003088 hasConceptScore W2296003088C24890656 @default.
- W2296003088 hasConceptScore W2296003088C2779557605 @default.
- W2296003088 hasConceptScore W2296003088C33923547 @default.
- W2296003088 hasConceptScore W2296003088C47458327 @default.
- W2296003088 hasConceptScore W2296003088C62520636 @default.
- W2296003088 hasConceptScore W2296003088C63553672 @default.
- W2296003088 hasIssue "1" @default.
- W2296003088 hasLocation W22960030881 @default.
- W2296003088 hasOpenAccess W2296003088 @default.
- W2296003088 hasPrimaryLocation W22960030881 @default.
- W2296003088 hasRelatedWork W2024593554 @default.
- W2296003088 hasRelatedWork W207698748 @default.
- W2296003088 hasRelatedWork W2088103653 @default.
- W2296003088 hasRelatedWork W2119949644 @default.
- W2296003088 hasRelatedWork W2167810763 @default.
- W2296003088 hasRelatedWork W2745621730 @default.
- W2296003088 hasRelatedWork W2781816256 @default.
- W2296003088 hasRelatedWork W3135762022 @default.
- W2296003088 hasRelatedWork W39687547 @default.
- W2296003088 hasRelatedWork W4297801704 @default.
- W2296003088 hasVolume "8" @default.
- W2296003088 isParatext "false" @default.
- W2296003088 isRetracted "false" @default.
- W2296003088 magId "2296003088" @default.
- W2296003088 workType "article" @default.