Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296125974> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2296125974 abstract "Predicting genetic values is important in animal and plant breeding, personalized medicine and evolutionary biology. Traditionally, prediction is based on a best linear unbiased prediction (BLUP) approach within a linear mixed model framework, with covariance structures obtained from relationship measures between individuals. Nowadays, single nucleotide polymorphism (SNP) data allow to incorporate genomic information into the model (genomic BLUP (GBLUP)). Prediction is also the principal topic in geostatistics in the framework of correlated data. Here, the so-called “kriging” approach performs BLUP using parameterized covariance functions. In this thesis, the kriging concept to perform genomic prediction using the family of Matérn covariance functions is adopted and kriging is compared to GBLUP in a whole-genome simulation study. The results of the simulation study suggest that kriging is superior over GBLUP in non-additive gene-action scenarios. The methodological development of genome-based prediction methods has become even more important with the increasing availability of whole genome sequence data. This thesis provides the world-wide first application of phenotype prediction based on sequence data in a higher eukaryote using the “Drosophila melanogaster Genetic Reference Panel”, which comprises sequences and phenotypic data of 157 inbred lines of the model organism Drosophila melanogaster. For the traits “starvation resistance” and “startle response” moderate predictive abilities are obtained performing GBLUP, utilizing 2.5 million SNPs to infer genomic relationships between individuals. The predictive ability of a Bayesian method with internal SNP selection is not higher than the one obtained with GBLUP, and predictive ability of GBLUP decreases only when fewer than 150,000 SNPs are used. For a third trait (“chill coma recovery”) the GBLUP approach fails completely. Based on differentiated analyses and a corresponding two-marker genome-wide association study, two possible reasons for this failure are identified: the bimodal phenotypic distribution and an extensive network of epistatic interactions between SNPs. The accuracy of genomic prediction is also affected by the underlying structure of linkage disequilibrium (LD) between SNPs. Several formulae for the expected levels of LD in finite populations have been proposed in the literature, most of them being approximate. In this thesis, an alternative recursion formula for the development of LD over time is proposed. A simulation study illustrates that for all parameter constellations under consideration the proposed formula performs better than the widely used formula of Sved. The theory of discrete-time Markov chains further allows the derivation of the expected amount of LD at equilibrium, leading to a formula for the effective population size Ne. By analyzing the effect of non-exactness of the recursion formula on the steady-state, it is demonstrated that the resulting error in expected LD can be substantial. Using the human HapMap data, it is further illustrated that the Ne-estimate strongly depends on the distribution of minor allele frequencies taken as a basis to select SNPs for the analyses. Comprising a wide spectrum of investigations at the interface between statistics, animal breeding and genetics, the findings of this thesis are of interest from a practical as well as from a methodical statistical point of view." @default.
- W2296125974 created "2016-06-24" @default.
- W2296125974 creator A5075218252 @default.
- W2296125974 date "2022-02-20" @default.
- W2296125974 modified "2023-10-01" @default.
- W2296125974 title "Genomic Prediction for Quantitative Traits: Using Kernel Methods and Whole Genome Sequence Based Approaches" @default.
- W2296125974 cites W1577941315 @default.
- W2296125974 cites W1853535253 @default.
- W2296125974 cites W1965563492 @default.
- W2296125974 cites W1969849531 @default.
- W2296125974 cites W1977471773 @default.
- W2296125974 cites W1999673422 @default.
- W2296125974 cites W2007549363 @default.
- W2296125974 cites W2008293760 @default.
- W2296125974 cites W2097840595 @default.
- W2296125974 cites W2116913941 @default.
- W2296125974 cites W2159103438 @default.
- W2296125974 cites W2476621941 @default.
- W2296125974 doi "https://doi.org/10.53846/goediss-2514" @default.
- W2296125974 hasPublicationYear "2022" @default.
- W2296125974 type Work @default.
- W2296125974 sameAs 2296125974 @default.
- W2296125974 citedByCount "0" @default.
- W2296125974 crossrefType "dissertation" @default.
- W2296125974 hasAuthorship W2296125974A5075218252 @default.
- W2296125974 hasBestOaLocation W22961259741 @default.
- W2296125974 hasConcept C103545067 @default.
- W2296125974 hasConcept C105795698 @default.
- W2296125974 hasConcept C119857082 @default.
- W2296125974 hasConcept C163175372 @default.
- W2296125974 hasConcept C178650346 @default.
- W2296125974 hasConcept C33923547 @default.
- W2296125974 hasConcept C41008148 @default.
- W2296125974 hasConcept C54355233 @default.
- W2296125974 hasConcept C70721500 @default.
- W2296125974 hasConcept C81692654 @default.
- W2296125974 hasConcept C81917197 @default.
- W2296125974 hasConcept C86803240 @default.
- W2296125974 hasConceptScore W2296125974C103545067 @default.
- W2296125974 hasConceptScore W2296125974C105795698 @default.
- W2296125974 hasConceptScore W2296125974C119857082 @default.
- W2296125974 hasConceptScore W2296125974C163175372 @default.
- W2296125974 hasConceptScore W2296125974C178650346 @default.
- W2296125974 hasConceptScore W2296125974C33923547 @default.
- W2296125974 hasConceptScore W2296125974C41008148 @default.
- W2296125974 hasConceptScore W2296125974C54355233 @default.
- W2296125974 hasConceptScore W2296125974C70721500 @default.
- W2296125974 hasConceptScore W2296125974C81692654 @default.
- W2296125974 hasConceptScore W2296125974C81917197 @default.
- W2296125974 hasConceptScore W2296125974C86803240 @default.
- W2296125974 hasLocation W22961259741 @default.
- W2296125974 hasOpenAccess W2296125974 @default.
- W2296125974 hasPrimaryLocation W22961259741 @default.
- W2296125974 hasRelatedWork W1580050492 @default.
- W2296125974 hasRelatedWork W1986378281 @default.
- W2296125974 hasRelatedWork W2071687405 @default.
- W2296125974 hasRelatedWork W2241258481 @default.
- W2296125974 hasRelatedWork W2317351469 @default.
- W2296125974 hasRelatedWork W2942141241 @default.
- W2296125974 hasRelatedWork W3021833405 @default.
- W2296125974 hasRelatedWork W3097107523 @default.
- W2296125974 hasRelatedWork W3124990805 @default.
- W2296125974 hasRelatedWork W1898237347 @default.
- W2296125974 isParatext "false" @default.
- W2296125974 isRetracted "false" @default.
- W2296125974 magId "2296125974" @default.
- W2296125974 workType "dissertation" @default.