Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296257509> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2296257509 endingPage "226" @default.
- W2296257509 startingPage "214" @default.
- W2296257509 abstract "Acceleration is an important driving manoeuvre that has been modelled for decades as a critical element of the microscopic traffic simulation tools. The state-of-the art acceleration models have however primarily focused on lane based traffic. In lane based traffic, every driver has a single distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the stimulus from the governing leader. However, only the applied accelerations are observed in the trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore cannot be directly applied to traffic streams with weak lane discipline. This prompts the current research where we present a latent leader acceleration model. The model has two components: a random utility based dynamic class membership model (latent leader component) and a class-specific acceleration model (acceleration component). The parameters of the model have been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. RESULTS indicate that the probability of a given front vehicle of being the governing leader can depend on the type of the lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are compared against a simpler acceleration model (where the leader is determined deterministically) and a significant improvement in the goodness-of-fit is observed. The proposed models, when implemented in microscopic traffic simulation tools, are expected to result more realistic representation of traffic streams with weak lane discipline. Language: en" @default.
- W2296257509 created "2016-06-24" @default.
- W2296257509 creator A5032227022 @default.
- W2296257509 creator A5051172653 @default.
- W2296257509 date "2016-06-01" @default.
- W2296257509 modified "2023-09-30" @default.
- W2296257509 title "Modelling acceleration decisions in traffic streams with weak lane discipline: A latent leader approach" @default.
- W2296257509 cites W1521666793 @default.
- W2296257509 cites W1991611335 @default.
- W2296257509 cites W2007895504 @default.
- W2296257509 cites W2008406490 @default.
- W2296257509 cites W2016377788 @default.
- W2296257509 cites W2020525017 @default.
- W2296257509 cites W2029807096 @default.
- W2296257509 cites W2031566821 @default.
- W2296257509 cites W2042350055 @default.
- W2296257509 cites W2047688790 @default.
- W2296257509 cites W2052462904 @default.
- W2296257509 cites W2056999283 @default.
- W2296257509 cites W2058083416 @default.
- W2296257509 cites W2074841200 @default.
- W2296257509 cites W2085603419 @default.
- W2296257509 cites W2089080831 @default.
- W2296257509 cites W2090023516 @default.
- W2296257509 cites W2090403203 @default.
- W2296257509 cites W2102847084 @default.
- W2296257509 cites W2108658186 @default.
- W2296257509 cites W2122822397 @default.
- W2296257509 cites W2124298315 @default.
- W2296257509 cites W2135538542 @default.
- W2296257509 cites W2151221872 @default.
- W2296257509 cites W2153220949 @default.
- W2296257509 cites W2159929548 @default.
- W2296257509 cites W2167473727 @default.
- W2296257509 cites W2169481629 @default.
- W2296257509 cites W2169982413 @default.
- W2296257509 doi "https://doi.org/10.1016/j.trc.2016.02.010" @default.
- W2296257509 hasPublicationYear "2016" @default.
- W2296257509 type Work @default.
- W2296257509 sameAs 2296257509 @default.
- W2296257509 citedByCount "25" @default.
- W2296257509 countsByYear W22962575092016 @default.
- W2296257509 countsByYear W22962575092017 @default.
- W2296257509 countsByYear W22962575092018 @default.
- W2296257509 countsByYear W22962575092019 @default.
- W2296257509 countsByYear W22962575092020 @default.
- W2296257509 countsByYear W22962575092021 @default.
- W2296257509 countsByYear W22962575092022 @default.
- W2296257509 countsByYear W22962575092023 @default.
- W2296257509 crossrefType "journal-article" @default.
- W2296257509 hasAuthorship W2296257509A5032227022 @default.
- W2296257509 hasAuthorship W2296257509A5051172653 @default.
- W2296257509 hasBestOaLocation W22962575092 @default.
- W2296257509 hasConcept C117896860 @default.
- W2296257509 hasConcept C121332964 @default.
- W2296257509 hasConcept C31258907 @default.
- W2296257509 hasConcept C41008148 @default.
- W2296257509 hasConcept C42090638 @default.
- W2296257509 hasConcept C74650414 @default.
- W2296257509 hasConceptScore W2296257509C117896860 @default.
- W2296257509 hasConceptScore W2296257509C121332964 @default.
- W2296257509 hasConceptScore W2296257509C31258907 @default.
- W2296257509 hasConceptScore W2296257509C41008148 @default.
- W2296257509 hasConceptScore W2296257509C42090638 @default.
- W2296257509 hasConceptScore W2296257509C74650414 @default.
- W2296257509 hasLocation W22962575091 @default.
- W2296257509 hasLocation W22962575092 @default.
- W2296257509 hasOpenAccess W2296257509 @default.
- W2296257509 hasPrimaryLocation W22962575091 @default.
- W2296257509 hasRelatedWork W115787419 @default.
- W2296257509 hasRelatedWork W2046674671 @default.
- W2296257509 hasRelatedWork W2050295713 @default.
- W2296257509 hasRelatedWork W205648239 @default.
- W2296257509 hasRelatedWork W2145120171 @default.
- W2296257509 hasRelatedWork W2238599277 @default.
- W2296257509 hasRelatedWork W2334651808 @default.
- W2296257509 hasRelatedWork W2363957433 @default.
- W2296257509 hasRelatedWork W2896245592 @default.
- W2296257509 hasRelatedWork W2982619786 @default.
- W2296257509 hasVolume "67" @default.
- W2296257509 isParatext "false" @default.
- W2296257509 isRetracted "false" @default.
- W2296257509 magId "2296257509" @default.
- W2296257509 workType "article" @default.