Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296367488> ?p ?o ?g. }
- W2296367488 endingPage "9834" @default.
- W2296367488 startingPage "9827" @default.
- W2296367488 abstract "Nascent polypeptides are degraded by the proteasome concurrently with their synthesis on the ribosome. This process, called cotranslational protein degradation (CTPD), has been observed for years, but the underlying mechanisms remain poorly understood. Equally unclear are the identities of cellular proteins genuinely subjected to CTPD. Here we report the identification of CTPD substrates in the yeast Saccharomyces cerevisiae via a quantitative proteomic analysis. We compared the abundance of individual ribosome-bound nascent chains between a wild type strain and a mutant defective in CTPD. Of 1,422 proteins acquired from the proteomic analysis, 289 species are efficient CTPD substrates, with >30% of their nascent chains degraded cotranslationally. We found that proteins involved in translation, ribosome biogenesis, nuclear transport, and amino acid metabolism are more likely to be targeted for CTPD. There is a strong correlation between CTPD and the translation efficiency. CTPD occurs preferentially to rapidly translated polypeptides. CTPD is also influenced by the protein sequence length; longer polypeptides are more susceptible to CTPD. In addition, proteins with N-terminal disorder have a higher probability of being degraded cotranslationally. Interestingly, the CTPD efficiency is not related to the half-lives of mature proteins. These results for the first time indicate an inverse correlation between CTPD and cotranslational folding on a proteome scale. The implications of this study with respect to the physiological significance of CTPD are discussed. Nascent polypeptides are degraded by the proteasome concurrently with their synthesis on the ribosome. This process, called cotranslational protein degradation (CTPD), has been observed for years, but the underlying mechanisms remain poorly understood. Equally unclear are the identities of cellular proteins genuinely subjected to CTPD. Here we report the identification of CTPD substrates in the yeast Saccharomyces cerevisiae via a quantitative proteomic analysis. We compared the abundance of individual ribosome-bound nascent chains between a wild type strain and a mutant defective in CTPD. Of 1,422 proteins acquired from the proteomic analysis, 289 species are efficient CTPD substrates, with >30% of their nascent chains degraded cotranslationally. We found that proteins involved in translation, ribosome biogenesis, nuclear transport, and amino acid metabolism are more likely to be targeted for CTPD. There is a strong correlation between CTPD and the translation efficiency. CTPD occurs preferentially to rapidly translated polypeptides. CTPD is also influenced by the protein sequence length; longer polypeptides are more susceptible to CTPD. In addition, proteins with N-terminal disorder have a higher probability of being degraded cotranslationally. Interestingly, the CTPD efficiency is not related to the half-lives of mature proteins. These results for the first time indicate an inverse correlation between CTPD and cotranslational folding on a proteome scale. The implications of this study with respect to the physiological significance of CTPD are discussed." @default.
- W2296367488 created "2016-06-24" @default.
- W2296367488 creator A5002541961 @default.
- W2296367488 creator A5024891804 @default.
- W2296367488 creator A5037985694 @default.
- W2296367488 creator A5040671482 @default.
- W2296367488 date "2016-04-01" @default.
- W2296367488 modified "2023-10-16" @default.
- W2296367488 title "Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation" @default.
- W2296367488 cites W1497913552 @default.
- W2296367488 cites W1782287000 @default.
- W2296367488 cites W1854281301 @default.
- W2296367488 cites W1952608303 @default.
- W2296367488 cites W1956613997 @default.
- W2296367488 cites W1970711633 @default.
- W2296367488 cites W1971108880 @default.
- W2296367488 cites W1977898751 @default.
- W2296367488 cites W1991921179 @default.
- W2296367488 cites W2000789682 @default.
- W2296367488 cites W2006641649 @default.
- W2296367488 cites W2013947447 @default.
- W2296367488 cites W2014623005 @default.
- W2296367488 cites W2014675809 @default.
- W2296367488 cites W2029220273 @default.
- W2296367488 cites W2034764834 @default.
- W2296367488 cites W2038547238 @default.
- W2296367488 cites W2054269398 @default.
- W2296367488 cites W2058326770 @default.
- W2296367488 cites W2065235814 @default.
- W2296367488 cites W2065248572 @default.
- W2296367488 cites W2071847586 @default.
- W2296367488 cites W2080416353 @default.
- W2296367488 cites W2085717111 @default.
- W2296367488 cites W2093835976 @default.
- W2296367488 cites W2094148055 @default.
- W2296367488 cites W2094179288 @default.
- W2296367488 cites W2102898524 @default.
- W2296367488 cites W2109281577 @default.
- W2296367488 cites W2122611378 @default.
- W2296367488 cites W2126395278 @default.
- W2296367488 cites W2140946052 @default.
- W2296367488 cites W2146503498 @default.
- W2296367488 cites W2147411714 @default.
- W2296367488 cites W2150860983 @default.
- W2296367488 cites W2154232977 @default.
- W2296367488 cites W2156106047 @default.
- W2296367488 cites W2159457776 @default.
- W2296367488 cites W2180080905 @default.
- W2296367488 cites W2215862553 @default.
- W2296367488 cites W4252684946 @default.
- W2296367488 doi "https://doi.org/10.1074/jbc.m116.716175" @default.
- W2296367488 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4850318" @default.
- W2296367488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26961882" @default.
- W2296367488 hasPublicationYear "2016" @default.
- W2296367488 type Work @default.
- W2296367488 sameAs 2296367488 @default.
- W2296367488 citedByCount "15" @default.
- W2296367488 countsByYear W22963674882016 @default.
- W2296367488 countsByYear W22963674882017 @default.
- W2296367488 countsByYear W22963674882018 @default.
- W2296367488 countsByYear W22963674882019 @default.
- W2296367488 countsByYear W22963674882020 @default.
- W2296367488 countsByYear W22963674882021 @default.
- W2296367488 countsByYear W22963674882023 @default.
- W2296367488 crossrefType "journal-article" @default.
- W2296367488 hasAuthorship W2296367488A5002541961 @default.
- W2296367488 hasAuthorship W2296367488A5024891804 @default.
- W2296367488 hasAuthorship W2296367488A5037985694 @default.
- W2296367488 hasAuthorship W2296367488A5040671482 @default.
- W2296367488 hasBestOaLocation W22963674881 @default.
- W2296367488 hasConcept C104317684 @default.
- W2296367488 hasConcept C104397665 @default.
- W2296367488 hasConcept C105580179 @default.
- W2296367488 hasConcept C131934819 @default.
- W2296367488 hasConcept C149364088 @default.
- W2296367488 hasConcept C204328495 @default.
- W2296367488 hasConcept C27740335 @default.
- W2296367488 hasConcept C2777576037 @default.
- W2296367488 hasConcept C2779222958 @default.
- W2296367488 hasConcept C2779419633 @default.
- W2296367488 hasConcept C2992195973 @default.
- W2296367488 hasConcept C34905852 @default.
- W2296367488 hasConcept C3675279 @default.
- W2296367488 hasConcept C46111723 @default.
- W2296367488 hasConcept C55493867 @default.
- W2296367488 hasConcept C67705224 @default.
- W2296367488 hasConcept C86803240 @default.
- W2296367488 hasConcept C88478588 @default.
- W2296367488 hasConcept C95444343 @default.
- W2296367488 hasConceptScore W2296367488C104317684 @default.
- W2296367488 hasConceptScore W2296367488C104397665 @default.
- W2296367488 hasConceptScore W2296367488C105580179 @default.
- W2296367488 hasConceptScore W2296367488C131934819 @default.
- W2296367488 hasConceptScore W2296367488C149364088 @default.
- W2296367488 hasConceptScore W2296367488C204328495 @default.
- W2296367488 hasConceptScore W2296367488C27740335 @default.
- W2296367488 hasConceptScore W2296367488C2777576037 @default.
- W2296367488 hasConceptScore W2296367488C2779222958 @default.