Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296491737> ?p ?o ?g. }
- W2296491737 endingPage "015005" @default.
- W2296491737 startingPage "015005" @default.
- W2296491737 abstract "Mapping vegetation abundance by using remote sensing data is an efficient means for detecting changes of an eco-environment. With Landsat-8 operational land imager (OLI) imagery acquired on July 31, 2013, both linear spectral mixture analysis (LSMA) and multinomial logit model (MNLM) methods were applied to estimate and assess the vegetation abundance in the Wild Duck Lake Wetland in Beijing, China. To improve mapping vegetation abundance and increase the number of endmembers in spectral mixture analysis, normalized difference vegetation index was extracted from OLI imagery along with the seven reflective bands of OLI data for estimating the vegetation abundance. Five endmembers were selected, which include terrestrial plants, aquatic plants, bare soil, high albedo, and low albedo. The vegetation abundance mapping results from Landsat OLI data were finally evaluated by utilizing a WorldView-2 multispectral imagery. Similar spatial patterns of vegetation abundance produced by both fully constrained LSMA algorithm and MNLM methods were observed: higher vegetation abundance levels were distributed in agricultural and riparian areas while lower levels in urban/built-up areas. The experimental results also indicate that the MNLM model outperformed the LSMA algorithm with smaller root mean square error (0.0152 versus 0.0252) and higher coefficient of determination (0.7856 versus 0.7214) as the MNLM model could handle the nonlinear reflection phenomenon better than the LSMA with mixed pixels." @default.
- W2296491737 created "2016-06-24" @default.
- W2296491737 creator A5010643092 @default.
- W2296491737 creator A5011913601 @default.
- W2296491737 creator A5015096720 @default.
- W2296491737 creator A5027921393 @default.
- W2296491737 creator A5053204257 @default.
- W2296491737 date "2016-01-20" @default.
- W2296491737 modified "2023-10-16" @default.
- W2296491737 title "Estimating wetland vegetation abundance from Landsat-8 operational land imager imagery: a comparison between linear spectral mixture analysis and multinomial logit modeling methods" @default.
- W2296491737 cites W1963772737 @default.
- W2296491737 cites W1979789940 @default.
- W2296491737 cites W1981198453 @default.
- W2296491737 cites W1984091965 @default.
- W2296491737 cites W2008801755 @default.
- W2296491737 cites W2011346144 @default.
- W2296491737 cites W2019281621 @default.
- W2296491737 cites W2022669139 @default.
- W2296491737 cites W2025541992 @default.
- W2296491737 cites W2029251415 @default.
- W2296491737 cites W2032271925 @default.
- W2296491737 cites W2045801876 @default.
- W2296491737 cites W2049827513 @default.
- W2296491737 cites W2059383999 @default.
- W2296491737 cites W2065051496 @default.
- W2296491737 cites W2065306917 @default.
- W2296491737 cites W2065746564 @default.
- W2296491737 cites W2068754720 @default.
- W2296491737 cites W2069358120 @default.
- W2296491737 cites W2077509829 @default.
- W2296491737 cites W2136625467 @default.
- W2296491737 cites W2152702230 @default.
- W2296491737 cites W2166953737 @default.
- W2296491737 cites W2334095511 @default.
- W2296491737 cites W292183080 @default.
- W2296491737 doi "https://doi.org/10.1117/1.jrs.10.015005" @default.
- W2296491737 hasPublicationYear "2016" @default.
- W2296491737 type Work @default.
- W2296491737 sameAs 2296491737 @default.
- W2296491737 citedByCount "2" @default.
- W2296491737 countsByYear W22964917372017 @default.
- W2296491737 countsByYear W22964917372021 @default.
- W2296491737 crossrefType "journal-article" @default.
- W2296491737 hasAuthorship W2296491737A5010643092 @default.
- W2296491737 hasAuthorship W2296491737A5011913601 @default.
- W2296491737 hasAuthorship W2296491737A5015096720 @default.
- W2296491737 hasAuthorship W2296491737A5027921393 @default.
- W2296491737 hasAuthorship W2296491737A5053204257 @default.
- W2296491737 hasConcept C100970517 @default.
- W2296491737 hasConcept C11731853 @default.
- W2296491737 hasConcept C127313418 @default.
- W2296491737 hasConcept C142724271 @default.
- W2296491737 hasConcept C1549246 @default.
- W2296491737 hasConcept C173163844 @default.
- W2296491737 hasConcept C185933670 @default.
- W2296491737 hasConcept C18903297 @default.
- W2296491737 hasConcept C205649164 @default.
- W2296491737 hasConcept C25989453 @default.
- W2296491737 hasConcept C2776133958 @default.
- W2296491737 hasConcept C2780376076 @default.
- W2296491737 hasConcept C2780648208 @default.
- W2296491737 hasConcept C39432304 @default.
- W2296491737 hasConcept C4792198 @default.
- W2296491737 hasConcept C62649853 @default.
- W2296491737 hasConcept C67715294 @default.
- W2296491737 hasConcept C71924100 @default.
- W2296491737 hasConcept C77077793 @default.
- W2296491737 hasConcept C78869512 @default.
- W2296491737 hasConcept C86803240 @default.
- W2296491737 hasConceptScore W2296491737C100970517 @default.
- W2296491737 hasConceptScore W2296491737C11731853 @default.
- W2296491737 hasConceptScore W2296491737C127313418 @default.
- W2296491737 hasConceptScore W2296491737C142724271 @default.
- W2296491737 hasConceptScore W2296491737C1549246 @default.
- W2296491737 hasConceptScore W2296491737C173163844 @default.
- W2296491737 hasConceptScore W2296491737C185933670 @default.
- W2296491737 hasConceptScore W2296491737C18903297 @default.
- W2296491737 hasConceptScore W2296491737C205649164 @default.
- W2296491737 hasConceptScore W2296491737C25989453 @default.
- W2296491737 hasConceptScore W2296491737C2776133958 @default.
- W2296491737 hasConceptScore W2296491737C2780376076 @default.
- W2296491737 hasConceptScore W2296491737C2780648208 @default.
- W2296491737 hasConceptScore W2296491737C39432304 @default.
- W2296491737 hasConceptScore W2296491737C4792198 @default.
- W2296491737 hasConceptScore W2296491737C62649853 @default.
- W2296491737 hasConceptScore W2296491737C67715294 @default.
- W2296491737 hasConceptScore W2296491737C71924100 @default.
- W2296491737 hasConceptScore W2296491737C77077793 @default.
- W2296491737 hasConceptScore W2296491737C78869512 @default.
- W2296491737 hasConceptScore W2296491737C86803240 @default.
- W2296491737 hasIssue "1" @default.
- W2296491737 hasLocation W22964917371 @default.
- W2296491737 hasOpenAccess W2296491737 @default.
- W2296491737 hasPrimaryLocation W22964917371 @default.
- W2296491737 hasRelatedWork W1968300283 @default.
- W2296491737 hasRelatedWork W2117160108 @default.
- W2296491737 hasRelatedWork W2300384899 @default.
- W2296491737 hasRelatedWork W2413001789 @default.