Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296536952> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2296536952 endingPage "1019" @default.
- W2296536952 startingPage "1010" @default.
- W2296536952 abstract "The present study aimed to apply artificial neural networking for quantification of quality attributes of agricultural commodity based on color and size. Three feed forward neural network models (NN) were developed: first for conversion of RGB to L*, a* and b* values (NN1), second for identification of ripening stages of tomato and third for correlating projection area/size of tomato with weight. Results showed that NN1 was able to convert RGB to L*, a* and b* values with accuracy percentage of 99%. The best results showed with excellent abilities were at 30 hidden units with R2 of 0.9980 and mean squared error (MSE) of 0.00021, whereas NN2 classified tomatoes in three ripening stages with an accuracy of 96%, with 30 hidden neurons and a 100% classification was performed when a threshold value of 0.7 was used. In addition, NN3 was able to correlate area with weight with an accuracy of 99%, with three hidden neurons. Practical Applications Computer vision system-based measurement of color and projection areas has been considered for the assessment of tomato quality. Image processing, a nondestructive method for evaluation of quality attributes of agricultural produce, serves as a best tool for measurement of size and color of nonuniform products. The color of whole surface can be evaluated using image analysis. Image processing was used as the basic tool and their functional relationships are expressed in terms of artificial neural network model." @default.
- W2296536952 created "2016-06-24" @default.
- W2296536952 creator A5056966074 @default.
- W2296536952 creator A5065508726 @default.
- W2296536952 creator A5082828142 @default.
- W2296536952 date "2015-12-15" @default.
- W2296536952 modified "2023-10-12" @default.
- W2296536952 title "Artificial Neural Network-Based Image Analysis for Evaluation of Quality Attributes of Agricultural Produce" @default.
- W2296536952 cites W1738386950 @default.
- W2296536952 cites W1965893030 @default.
- W2296536952 cites W200383157 @default.
- W2296536952 cites W2005013675 @default.
- W2296536952 cites W2023418190 @default.
- W2296536952 cites W2025465607 @default.
- W2296536952 cites W2030617962 @default.
- W2296536952 cites W2043604332 @default.
- W2296536952 cites W2078870638 @default.
- W2296536952 cites W2157054480 @default.
- W2296536952 doi "https://doi.org/10.1111/jfpp.12681" @default.
- W2296536952 hasPublicationYear "2015" @default.
- W2296536952 type Work @default.
- W2296536952 sameAs 2296536952 @default.
- W2296536952 citedByCount "16" @default.
- W2296536952 countsByYear W22965369522018 @default.
- W2296536952 countsByYear W22965369522019 @default.
- W2296536952 countsByYear W22965369522020 @default.
- W2296536952 countsByYear W22965369522021 @default.
- W2296536952 countsByYear W22965369522022 @default.
- W2296536952 crossrefType "journal-article" @default.
- W2296536952 hasAuthorship W2296536952A5056966074 @default.
- W2296536952 hasAuthorship W2296536952A5065508726 @default.
- W2296536952 hasAuthorship W2296536952A5082828142 @default.
- W2296536952 hasBestOaLocation W22965369521 @default.
- W2296536952 hasConcept C105795698 @default.
- W2296536952 hasConcept C11413529 @default.
- W2296536952 hasConcept C115961682 @default.
- W2296536952 hasConcept C116834253 @default.
- W2296536952 hasConcept C139945424 @default.
- W2296536952 hasConcept C153180895 @default.
- W2296536952 hasConcept C154945302 @default.
- W2296536952 hasConcept C31972630 @default.
- W2296536952 hasConcept C33923547 @default.
- W2296536952 hasConcept C41008148 @default.
- W2296536952 hasConcept C50644808 @default.
- W2296536952 hasConcept C55020928 @default.
- W2296536952 hasConcept C57493831 @default.
- W2296536952 hasConcept C59822182 @default.
- W2296536952 hasConcept C82990744 @default.
- W2296536952 hasConcept C86803240 @default.
- W2296536952 hasConcept C9417928 @default.
- W2296536952 hasConceptScore W2296536952C105795698 @default.
- W2296536952 hasConceptScore W2296536952C11413529 @default.
- W2296536952 hasConceptScore W2296536952C115961682 @default.
- W2296536952 hasConceptScore W2296536952C116834253 @default.
- W2296536952 hasConceptScore W2296536952C139945424 @default.
- W2296536952 hasConceptScore W2296536952C153180895 @default.
- W2296536952 hasConceptScore W2296536952C154945302 @default.
- W2296536952 hasConceptScore W2296536952C31972630 @default.
- W2296536952 hasConceptScore W2296536952C33923547 @default.
- W2296536952 hasConceptScore W2296536952C41008148 @default.
- W2296536952 hasConceptScore W2296536952C50644808 @default.
- W2296536952 hasConceptScore W2296536952C55020928 @default.
- W2296536952 hasConceptScore W2296536952C57493831 @default.
- W2296536952 hasConceptScore W2296536952C59822182 @default.
- W2296536952 hasConceptScore W2296536952C82990744 @default.
- W2296536952 hasConceptScore W2296536952C86803240 @default.
- W2296536952 hasConceptScore W2296536952C9417928 @default.
- W2296536952 hasIssue "5" @default.
- W2296536952 hasLocation W22965369521 @default.
- W2296536952 hasOpenAccess W2296536952 @default.
- W2296536952 hasPrimaryLocation W22965369521 @default.
- W2296536952 hasRelatedWork W2052518016 @default.
- W2296536952 hasRelatedWork W2081022503 @default.
- W2296536952 hasRelatedWork W2085956791 @default.
- W2296536952 hasRelatedWork W2283162247 @default.
- W2296536952 hasRelatedWork W2314488738 @default.
- W2296536952 hasRelatedWork W2524507886 @default.
- W2296536952 hasRelatedWork W2767823485 @default.
- W2296536952 hasRelatedWork W2771653066 @default.
- W2296536952 hasRelatedWork W2901949253 @default.
- W2296536952 hasRelatedWork W4212983513 @default.
- W2296536952 hasVolume "40" @default.
- W2296536952 isParatext "false" @default.
- W2296536952 isRetracted "false" @default.
- W2296536952 magId "2296536952" @default.
- W2296536952 workType "article" @default.