Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296545900> ?p ?o ?g. }
- W2296545900 endingPage "20495" @default.
- W2296545900 startingPage "20486" @default.
- W2296545900 abstract "// Hua Zhao 1 , Amy B. Heimberger 2 , Zhimin Lu 3 , Xifeng Wu 1 , Tiffany R. Hodges 2 , Renduo Song 1 , Jie Shen 1 1 Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2 Division of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 3 Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Correspondence to: Hua Zhao, e-mail: hzhao2@mdanderson.org Keywords: metabolomics, glioma, tumor phenotype Received: September 17, 2015 Accepted: February 13, 2016 Published: March 07, 2016 ABSTRACT Background: Tumor-based molecular biomarkers have redefined in the classification gliomas. However, the association of systemic metabolomics with glioma phenotype has not been explored yet. Methods: In this study, we conducted two-step (discovery and validation) metabolomic profiling in plasma samples from 87 glioma patients. The metabolomics data were tested for correlation with glioma grade (high vs low), glioblastoma (GBM) versus malignant gliomas, and IDH mutation status. Results: Five metabolites, namely uracil, arginine, lactate, cystamine, and ornithine, significantly differed between high- and low-grade glioma patients in both the discovery and validation cohorts. When the discovery and validation cohorts were combined, we identified 29 significant metabolites with 18 remaining significant after adjusting for multiple comparisons. Those 18 significant metabolites separated high- from low-grade glioma patients with 91.1% accuracy. In the pathway analysis, a total of 18 significantly metabolic pathways were identified. Similarly, we identified 2 and 6 metabolites that significantly differed between GBM and non-GBM, and IDH mutation positive and negative patients after multiple comparison adjusting. Those 6 significant metabolites separated IDH1 mutation positive from negative glioma patients with 94.4% accuracy. Three pathways were identified to be associated with IDH mutation status. Within arginine and proline metabolism, levels of intermediate metabolites in creatine pathway were all significantly lower in IDH mutation positive than in negative patients, suggesting an increased activity of creatine pathway in IDH mutation positive tumors. Conclusion: Our findings identified metabolites and metabolic pathways that differentiated tumor phenotypes. These may be useful as host biomarker candidates to further help glioma molecular classification." @default.
- W2296545900 created "2016-06-24" @default.
- W2296545900 creator A5000480948 @default.
- W2296545900 creator A5010205547 @default.
- W2296545900 creator A5027999237 @default.
- W2296545900 creator A5034055316 @default.
- W2296545900 creator A5035683123 @default.
- W2296545900 creator A5066957198 @default.
- W2296545900 creator A5079081497 @default.
- W2296545900 date "2016-03-07" @default.
- W2296545900 modified "2023-10-03" @default.
- W2296545900 title "Metabolomics profiling in plasma samples from glioma patients correlates with tumor phenotypes" @default.
- W2296545900 cites W1002166417 @default.
- W2296545900 cites W1514798058 @default.
- W2296545900 cites W1793352319 @default.
- W2296545900 cites W1812256879 @default.
- W2296545900 cites W1945493283 @default.
- W2296545900 cites W1966472212 @default.
- W2296545900 cites W1968253563 @default.
- W2296545900 cites W1968587972 @default.
- W2296545900 cites W1991222141 @default.
- W2296545900 cites W1996190231 @default.
- W2296545900 cites W2010434645 @default.
- W2296545900 cites W2022461902 @default.
- W2296545900 cites W2025183726 @default.
- W2296545900 cites W2027449497 @default.
- W2296545900 cites W2044864652 @default.
- W2296545900 cites W2045963949 @default.
- W2296545900 cites W2063028213 @default.
- W2296545900 cites W2065231082 @default.
- W2296545900 cites W2069303197 @default.
- W2296545900 cites W2075836199 @default.
- W2296545900 cites W2077491506 @default.
- W2296545900 cites W2087594681 @default.
- W2296545900 cites W2095011547 @default.
- W2296545900 cites W2096398054 @default.
- W2296545900 cites W2106712645 @default.
- W2296545900 cites W2107363389 @default.
- W2296545900 cites W2114907730 @default.
- W2296545900 cites W2119785831 @default.
- W2296545900 cites W2119813594 @default.
- W2296545900 cites W2138233516 @default.
- W2296545900 cites W2143078369 @default.
- W2296545900 cites W2159941636 @default.
- W2296545900 cites W2324926610 @default.
- W2296545900 cites W29398439 @default.
- W2296545900 cites W571060166 @default.
- W2296545900 doi "https://doi.org/10.18632/oncotarget.7974" @default.
- W2296545900 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4991469" @default.
- W2296545900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26967252" @default.
- W2296545900 hasPublicationYear "2016" @default.
- W2296545900 type Work @default.
- W2296545900 sameAs 2296545900 @default.
- W2296545900 citedByCount "48" @default.
- W2296545900 countsByYear W22965459002016 @default.
- W2296545900 countsByYear W22965459002017 @default.
- W2296545900 countsByYear W22965459002018 @default.
- W2296545900 countsByYear W22965459002019 @default.
- W2296545900 countsByYear W22965459002020 @default.
- W2296545900 countsByYear W22965459002021 @default.
- W2296545900 countsByYear W22965459002022 @default.
- W2296545900 countsByYear W22965459002023 @default.
- W2296545900 crossrefType "journal-article" @default.
- W2296545900 hasAuthorship W2296545900A5000480948 @default.
- W2296545900 hasAuthorship W2296545900A5010205547 @default.
- W2296545900 hasAuthorship W2296545900A5027999237 @default.
- W2296545900 hasAuthorship W2296545900A5034055316 @default.
- W2296545900 hasAuthorship W2296545900A5035683123 @default.
- W2296545900 hasAuthorship W2296545900A5066957198 @default.
- W2296545900 hasAuthorship W2296545900A5079081497 @default.
- W2296545900 hasBestOaLocation W22965459001 @default.
- W2296545900 hasConcept C126322002 @default.
- W2296545900 hasConcept C143998085 @default.
- W2296545900 hasConcept C21565614 @default.
- W2296545900 hasConcept C2778227246 @default.
- W2296545900 hasConcept C502942594 @default.
- W2296545900 hasConcept C60644358 @default.
- W2296545900 hasConcept C71924100 @default.
- W2296545900 hasConcept C86803240 @default.
- W2296545900 hasConceptScore W2296545900C126322002 @default.
- W2296545900 hasConceptScore W2296545900C143998085 @default.
- W2296545900 hasConceptScore W2296545900C21565614 @default.
- W2296545900 hasConceptScore W2296545900C2778227246 @default.
- W2296545900 hasConceptScore W2296545900C502942594 @default.
- W2296545900 hasConceptScore W2296545900C60644358 @default.
- W2296545900 hasConceptScore W2296545900C71924100 @default.
- W2296545900 hasConceptScore W2296545900C86803240 @default.
- W2296545900 hasIssue "15" @default.
- W2296545900 hasLocation W22965459001 @default.
- W2296545900 hasLocation W22965459002 @default.
- W2296545900 hasLocation W22965459003 @default.
- W2296545900 hasLocation W22965459004 @default.
- W2296545900 hasOpenAccess W2296545900 @default.
- W2296545900 hasPrimaryLocation W22965459001 @default.
- W2296545900 hasRelatedWork W1993921993 @default.
- W2296545900 hasRelatedWork W2508252533 @default.
- W2296545900 hasRelatedWork W2618376745 @default.
- W2296545900 hasRelatedWork W2732784745 @default.