Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296903273> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2296903273 endingPage "879" @default.
- W2296903273 startingPage "873" @default.
- W2296903273 abstract "NanomedicineVol. 11, No. 8 CommentaryTargeted, triggered drug delivery to tumor and biofilm microenvironmentsDanielle SW Benoit & Hyun KooDanielle SW Benoit*Author for correspondence: E-mail Address: benoit@bme.rochester.edu Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA Department of Chemical Engineering, University of Rochester, Rochester, NY, USA Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USASearch for more papers by this author & Hyun Koo Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Orthodontics & Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USASearch for more papers by this authorPublished Online:18 Mar 2016https://doi.org/10.2217/nnm-2016-0014AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: biofilmextracellular matrixmicroenvironmentnanomedicinenanoparticlestumorReferences1 Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013).Crossref, Medline, CAS, Google Scholar2 Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8), 615–627 (2010).Crossref, Medline, CAS, Google Scholar3 Lebeaux D, Chauhan A, Letoffe S et al. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J. Infect. Dis. 210(9), 1357–1366 (2014).Crossref, Medline, Google Scholar4 Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78(3), 510–543 (2014).Crossref, Medline, CAS, Google Scholar5 Torchilin VP. Multifunctional nanocarriers. Adv. Drug Del. Rev. 64, 302–315 (2012).Crossref, Google Scholar6 Upreti M, Jyoti A, Sethi P. Tumor microenvironment and nanotherapeutics. Transl. Cancer Res. 2(4), 309–319 (2013).Medline, CAS, Google Scholar7 Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 190, 607–623 (2014).Crossref, Medline, CAS, Google Scholar8 Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196(4), 395–406 (2012).Crossref, Medline, CAS, Google Scholar9 Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004).Crossref, Medline, CAS, Google Scholar10 Flemming HC, Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 8(9), 623–633 (2010).Crossref, Medline, CAS, Google Scholar11 Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J. Dent. Res. 92(12), 1065–1073 (2013).Crossref, Medline, CAS, Google Scholar12 Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6(3), 199–210 (2008).Crossref, Medline, CAS, Google Scholar13 Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11(17–18), 812–818 (2006).Crossref, Medline, CAS, Google Scholar14 Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 68(2), 257–274 (2013).Crossref, Medline, CAS, Google Scholar15 Barua S, Mitragotri S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano Today 9(2), 223–243 (2014).Crossref, Medline, CAS, Google Scholar16 Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekanandan P. The Warburg effect: insights from the past decade. Pharmacol. Ther. 137(3), 318–330 (2013).Crossref, Medline, CAS, Google Scholar17 Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv. Rev. 58(15), 1655–1670 (2006).Crossref, Medline, CAS, Google Scholar18 Wouters A, Pauwels B, Lardon F, Vermorken JB. Review: implications of in vitro research on the effect of radiotherapy and chemotherapy under hypoxic conditions. Oncologist 12(6), 690–712 (2007).Crossref, Medline, CAS, Google Scholar19 Simmen HP, Blaser J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 166(1), 24–27 (1993).Crossref, Medline, CAS, Google Scholar20 Horev B, Klein MI, Hwang G et al. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 9(3), 2390–2404 (2015).Crossref, Medline, CAS, Google Scholar21 Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6(5), 4279–4287 (2012).Crossref, Medline, CAS, Google Scholar22 Zhu YJ, Chen F. pH-responsive drug-delivery systems. Chem. Asian J. 10(2), 284–305 (2015).Crossref, Medline, CAS, Google Scholar23 Liu J, Huang Y, Kumar A et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 32(4), 693–710 (2014).Crossref, Medline, CAS, Google Scholar24 Thambi T, Deepagan VG, Yoon HY et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35(5), 1735–1743 (2014).Crossref, Medline, CAS, Google Scholar25 Perche F, Biswas S, Wang T, Zhu L, Torchilin VP. Hypoxia-targeted siRNA delivery. Angew. Chem. Int. Ed. Engl. 53(13), 3362–3366 (2014).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByBiofilm microenvironment response nanoplatform synergistically degrades biofilm structure and relieves hypoxia for efficient sonodynamic therapyChemical Engineering Journal, Vol. 453Immunometabolism in biofilm infection: lessons from cancer29 January 2022 | Molecular Medicine, Vol. 28, No. 1Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections5 July 2022 | Nature Communications, Vol. 13, No. 1Synergy between pH- and hypoxia-responsiveness in antibiotic-loaded micelles for eradicating mature, infectious biofilmsActa Biomaterialia, Vol. 17GSH-depleting and H2O2-self-supplying hybrid nanozymes for intensive catalytic antibacterial therapy by photothermal-augmented co-catalysisActa Biomaterialia, Vol. 32Facile construction of fluorescent C70-COOH nanoparticles with advanced antibacterial and anti-biofilm photodynamic activityJournal of Photochemistry and Photobiology B: Biology, Vol. 234Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-biofilm Properties11 August 2022 | ACS Applied Bio Materials, Vol. 11Self-locomotive, antimicrobial microrobot (SLAM) swarm for enhanced biofilm eliminationBiomaterials, Vol. 287Nanoparticles in Endodontics Disinfection: State of the Art21 July 2022 | Pharmaceutics, Vol. 14, No. 7Simultaneous Photodynamic Eradication of Tooth Biofilm and Tooth Whitening with an Aggregation‐Induced Emission Luminogen7 May 2022 | Advanced Science, Vol. 9, No. 20Photodegradation of methylene blue and Rose Bengal employing g-C3N4/ZnWO4 nanocatalysts under ultraviolet light irradiation16 June 2022 | Journal of Nanoparticle Research, Vol. 24, No. 6Self-targeting of zwitterion-based platforms for nano-antimicrobials and nanocarriers1 January 2022 | Journal of Materials Chemistry B, Vol. 10, No. 14Oxygen-carrying biomimetic nanoplatform for sonodynamic killing of bacteria and treatment of infection diseasesUltrasonics Sonochemistry, Vol. 84Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infectionsInternational Journal of Pharmaceutics, Vol. 616In vitro Evaluation of Synergistic Inhibitory Effect of Propolis and Chlorhexidine on Biofilm Cells of Oral Pathogens18 February 2022 | Jentashapir Journal of Cellular and Molecular Biology, Vol. 12, No. 4pH-Responsive Fluorescent Polymer–Drug System for Real-Time Detection and In Situ Eradication of Bacterial Biofilms11 January 2022 | ACS Biomaterials Science & Engineering, Vol. 8, No. 2Chemodynamic Therapy via Fenton and Fenton‐Like Nanomaterials: Strategies and Recent Advances2 November 2021 | Small, Vol. 18, No. 6A Bone-Targeting Enoxacin Delivery System to Eradicate Staphylococcus Aureus-Related Implantation Infections and Bone Loss16 November 2021 | Frontiers in Bioengineering and Biotechnology, Vol. 9Light-triggerable and pH/lipase-responsive release of antibiotics and β-lactamase inhibitors from host-guest self-assembled micelles to combat biofilms and resistant bacteriaChemical Engineering Journal, Vol. 424NIR-activated nanosystems with self-modulated bacteria targeting for enhanced biofilm eradication and caries preventionBioactive Materials, Vol. 82Recent advances in active targeting of nanomaterials for anticancer drug deliveryAdvances in Colloid and Interface Science, Vol. 296A Bifunctional Zwitterion‐Modified Porphyrin for Photodynamic Nondestructive Tooth Whitening and Biofilm Eradication29 July 2021 | Advanced Functional Materials, Vol. 31, No. 42Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections13 September 2021 | Frontiers in Medicine, Vol. 8Simultaneous inhibition of planktonic and biofilm bacteria by self-adapting semiconducting polymer dots1 January 2021 | Journal of Materials Chemistry B, Vol. 9, No. 33Liposomes with Water as a pH‐Responsive Functionality for Targeting of Acidic Tumor and Infection Sites1 July 2021 | Angewandte Chemie International Edition, Vol. 60, No. 32Liposomes with Water as a pH‐Responsive Functionality for Targeting of Acidic Tumor and Infection Sites1 July 2021 | Angewandte Chemie, Vol. 133, No. 32Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection3 July 2021 | Advanced Materials, Vol. 33, No. 33Recent developments for antimicrobial applications of graphene-based polymeric composites: A reviewJournal of Industrial and Engineering Chemistry, Vol. 100Release Strategies of Silver Ions from Materials for Bacterial Killing11 January 2021 | ACS Applied Bio Materials, Vol. 4, No. 5A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy1 January 2021 | Materials Horizons, Vol. 8, No. 4BIOFILM AND TUMOR: INTERPRETATION OF INTERACTION AND TREATMENT STRATEGIES. Review30 March 2021 | Medical Science of Ukraine (MSU), Vol. 17, No. 1Recent development of nanomedicine for the treatment of bacterial biofilm infections14 October 2020 | View, Vol. 2, No. 1Impact of the antibiotic-cargo from MSNs on gram-positive and gram-negative bacterial biofilmsMicroporous and Mesoporous Materials, Vol. 311Beyond Antibiotics: Photo/Sonodynamic Approaches for Bacterial Theranostics10 July 2020 | Nano-Micro Letters, Vol. 12, No. 1Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic releaseBiomaterials, Vol. 262pH-Responsive Antibacterial Resin Adhesives for Secondary Caries Inhibition29 June 2020 | Journal of Dental Research, Vol. 99, No. 12Space-Selective Chemodynamic Therapy of CuFe 5 O 8 Nanocubes for Implant-Related Infections15 September 2020 | ACS Nano, Vol. 14, No. 10Biofilm-Responsive Polymeric Nanoparticles with Self-Adaptive Deep Penetration for In Vivo Photothermal Treatment of Implant Infection19 August 2020 | Chemistry of Materials, Vol. 32, No. 18Leveraging metal oxide nanoparticles for bacteria tracing and eradicating4 August 2020 | View, Vol. 1, No. 3Protonation–Activity Relationship of Bioinspired Ionizable Glycomimetics for the Growth Inhibition of Bacteria25 May 2020 | ACS Applied Bio Materials, Vol. 3, No. 6Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms1 January 2020 | Journal of Materials Chemistry B, Vol. 8, No. 20Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedsideGratiela G Pircalabioru & Mariana-Carmen Chifiriuc4 June 2020 | Future Microbiology, Vol. 15, No. 8Biofilm Microenvironment-Responsive Nanotheranostics for Dual-Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial InfectionsResearch, Vol. 2020Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection5 February 2020 | ACS Nano, Vol. 14, No. 2Evaluation of the Synergism Mechanism of Tamoxifen and Docetaxel by NanoparticlesAnti-Cancer Agents in Medicinal Chemistry, Vol. 19, No. 16Biofilms, Biomaterials, and Device-Related InfectionsTumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A reviewActa Biomaterialia, Vol. 101Preparation and antitumor evaluation of hinokiflavone hybrid micelles with mitochondria targeted for lung adenocarcinoma treatment6 April 2020 | Drug Delivery, Vol. 27, No. 1Nanoparticle–Biofilm Interactions: The Role of the EPS MatrixTrends in Microbiology, Vol. 27, No. 11Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant InfectionsCurrent Drug Metabolism, Vol. 20, No. 9Sono‐Immunotherapeutic Nanocapturer to Combat Multidrug‐Resistant Bacterial Infections20 June 2019 | Advanced Materials, Vol. 31, No. 35Phosphorylcholine-Based Polymer Encapsulated Chitosan Nanoparticles Enhance the Penetration of Antimicrobials in a Staphylococcal Biofilm23 May 2019 | ACS Macro Letters, Vol. 8, No. 6Mesoporous Silica‐Based Materials with Bactericidal Properties29 April 2019 | Small, Vol. 15, No. 24Nanoparticles for Oral Biofilm Treatments29 April 2019 | ACS Nano, Vol. 13, No. 5Bacterial biofilm destruction by size/surface charge-adaptive micelles1 January 2019 | Nanoscale, Vol. 11, No. 3Functionalized Graphene for Drug Delivery Applications18 October 2019The association between hypoxia, chronic ischemia and alters prostate structure and progress of chronic prostatic disease20 September 2019 | Archives of Pharmacy and Pharmaceutical Sciences, Vol. 3, No. 1Novel Approaches to the Control of Oral Microbial BiofilmsBioMed Research International, Vol. 2018BAR-encapsulated nanoparticles for the inhibition and disruption of Porphyromonas gingivalis–Streptococcus gordonii biofilms15 September 2018 | Journal of Nanobiotechnology, Vol. 16, No. 1Gloriosa superba Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast CancerBioinorganic Chemistry and Applications, Vol. 2018Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections21 December 2017 | ACS Nano, Vol. 12, No. 1Metal/Metal Oxide Nanoparticles for Cancer Therapy2 June 2018Emerging Biomedical Applications of Enzyme-Like Catalytic NanomaterialsTrends in Biotechnology, Vol. 36, No. 1Targeting microbial biofilms: current and prospective therapeutic strategies25 September 2017 | Nature Reviews Microbiology, Vol. 15, No. 12Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines6 October 2016 | Journal of Drug Targeting, Vol. 25, No. 3Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives1 January 2016 | Chemical Communications, Vol. 52, No. 55Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine1 January 2016 | RSC Advances, Vol. 6, No. 92Zein nanocapsules as a tool for surface passivation, drug delivery and biofilm preventionAIMS Microbiology, Vol. 2, No. 4 Vol. 11, No. 8 Follow us on social media for the latest updates Metrics Downloaded 500 times History Published online 18 March 2016 Published in print April 2016 Information© Future Medicine LtdKeywordsbiofilmextracellular matrixmicroenvironmentnanomedicinenanoparticlestumorAcknowledgementsThe authors would like to thank Kenneth Sims for content feedback and artistic contribution towards Figure 1. The authors regret that several studies could only be cited indirectly from comprehensive reviews due to reference number limitations.Financial & competing interests disclosureThe authors gratefully acknowledge the NIH (K12ES019852, career development award to D Benoit; DE018023, PI: H Koo) and NSF (BMAT-DMR1206219, PI: D Benoit) for financial support. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W2296903273 created "2016-06-24" @default.
- W2296903273 creator A5015274437 @default.
- W2296903273 creator A5049350077 @default.
- W2296903273 date "2016-04-01" @default.
- W2296903273 modified "2023-09-30" @default.
- W2296903273 title "Targeted, triggered drug delivery to tumor and biofilm microenvironments" @default.
- W2296903273 cites W1967985930 @default.
- W2296903273 cites W1975088956 @default.
- W2296903273 cites W1978260286 @default.
- W2296903273 cites W1996064131 @default.
- W2296903273 cites W1998624315 @default.
- W2296903273 cites W2003229037 @default.
- W2296903273 cites W2024060557 @default.
- W2296903273 cites W2027137358 @default.
- W2296903273 cites W2029738070 @default.
- W2296903273 cites W2038163024 @default.
- W2296903273 cites W2059631164 @default.
- W2296903273 cites W2070300719 @default.
- W2296903273 cites W2122836009 @default.
- W2296903273 cites W2130166533 @default.
- W2296903273 cites W2131802255 @default.
- W2296903273 cites W2132566055 @default.
- W2296903273 cites W2132789515 @default.
- W2296903273 cites W2148357124 @default.
- W2296903273 cites W2157120247 @default.
- W2296903273 cites W2159955722 @default.
- W2296903273 cites W2161036292 @default.
- W2296903273 cites W2161807038 @default.
- W2296903273 cites W2165571249 @default.
- W2296903273 cites W4211093154 @default.
- W2296903273 doi "https://doi.org/10.2217/nnm-2016-0014" @default.
- W2296903273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26987892" @default.
- W2296903273 hasPublicationYear "2016" @default.
- W2296903273 type Work @default.
- W2296903273 sameAs 2296903273 @default.
- W2296903273 citedByCount "83" @default.
- W2296903273 countsByYear W22969032732016 @default.
- W2296903273 countsByYear W22969032732017 @default.
- W2296903273 countsByYear W22969032732018 @default.
- W2296903273 countsByYear W22969032732019 @default.
- W2296903273 countsByYear W22969032732020 @default.
- W2296903273 countsByYear W22969032732021 @default.
- W2296903273 countsByYear W22969032732022 @default.
- W2296903273 countsByYear W22969032732023 @default.
- W2296903273 crossrefType "journal-article" @default.
- W2296903273 hasAuthorship W2296903273A5015274437 @default.
- W2296903273 hasAuthorship W2296903273A5049350077 @default.
- W2296903273 hasConcept C171250308 @default.
- W2296903273 hasConcept C192562407 @default.
- W2296903273 hasConcept C2779820397 @default.
- W2296903273 hasConcept C2780035454 @default.
- W2296903273 hasConcept C523546767 @default.
- W2296903273 hasConcept C54355233 @default.
- W2296903273 hasConcept C58123911 @default.
- W2296903273 hasConcept C86803240 @default.
- W2296903273 hasConcept C98274493 @default.
- W2296903273 hasConceptScore W2296903273C171250308 @default.
- W2296903273 hasConceptScore W2296903273C192562407 @default.
- W2296903273 hasConceptScore W2296903273C2779820397 @default.
- W2296903273 hasConceptScore W2296903273C2780035454 @default.
- W2296903273 hasConceptScore W2296903273C523546767 @default.
- W2296903273 hasConceptScore W2296903273C54355233 @default.
- W2296903273 hasConceptScore W2296903273C58123911 @default.
- W2296903273 hasConceptScore W2296903273C86803240 @default.
- W2296903273 hasConceptScore W2296903273C98274493 @default.
- W2296903273 hasIssue "8" @default.
- W2296903273 hasLocation W22969032731 @default.
- W2296903273 hasLocation W22969032732 @default.
- W2296903273 hasOpenAccess W2296903273 @default.
- W2296903273 hasPrimaryLocation W22969032731 @default.
- W2296903273 hasRelatedWork W2069859065 @default.
- W2296903273 hasRelatedWork W2088806382 @default.
- W2296903273 hasRelatedWork W2355080005 @default.
- W2296903273 hasRelatedWork W3091612383 @default.
- W2296903273 hasRelatedWork W3157244191 @default.
- W2296903273 hasRelatedWork W4293192944 @default.
- W2296903273 hasRelatedWork W4310769842 @default.
- W2296903273 hasRelatedWork W4379745401 @default.
- W2296903273 hasRelatedWork W2291752956 @default.
- W2296903273 hasRelatedWork W2993762413 @default.
- W2296903273 hasVolume "11" @default.
- W2296903273 isParatext "false" @default.
- W2296903273 isRetracted "false" @default.
- W2296903273 magId "2296903273" @default.
- W2296903273 workType "article" @default.