Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296910760> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2296910760 abstract "This dissertation addresses two of the main components in intensity-based two-dimensional and three-dimensional multimodal biomedical image registration: (1) The similarity measure, which indicates the closeness of the match between the images, and (2) The optimization approach to find the highest value of the similarity measure. Feature-based, statistical, and information-theoretic approaches have been used as similarity metrics. The latter have been shown to be robust and accurate, and are increasingly popular in many registration applications. These measures are largely based on the Shannon-Boltzmann-Gibbs definition of entropy. This dissertation proposes using information measures based on generalized entropies, including the Renyi, Havrada-Charvat-Tsallis, and R-norm measures, in addition to the Shannon measure. These entropies, of which the Shannon entropy is a special case, have properties that facilitate accurate registration. Optimization of the similarity metric is the second focus of this dissertation. Traditionally, local techniques, such as Powell's direction set method and gradient-based methods, have been used. However, computing the derivative of the multidimensional similarity metric function is difficult and computationally expensive, and Powell's method is susceptible to entrapment in local extrema. Studies have recently appeared showing that local optimization, by itself, is often not sufficient for registration, and suggesting the use of simulated annealing, genetic algorithms, or evolutionary strategies for similarity metric optimization. The current work demonstrates that other global optimization methods, such as particle swarm optimization, may also be applied to registration. These methods have been adapted specifically for multimodal biomedical image registration. The dissertation is divided into nine chapters. Chapter One provides an overview of image registration and describes the fundamental issues that must be addressed in registration. Chapter Two presents common similarity metrics, with emphasis on information-theoretic measures. The concept of entropy is also developed from its original physical context. Chapter Three presents the concept of generalized entropies and the derivation of similarity measures from these measures. Their properties, as they relate to registration, are discussed. In Chapter Four, the main local and global optimization paradigms for registration are presented, and new registration optimization adaptations, including the tabu search and particle swarm optimization, are proposed. Chapter Five discusses the materials and methods used in the experimental part of this work. Chapter Six presents the results of experiments to demonstrate the validity of using the proposed similarity measures, as well as comparing them with traditional similarity metrics. In Chapter Seven, the results of the proposed optimization approaches, as well as comparisons with other local and global techniques, are presented. In Chapter Eight, the results are discussed, and the relationship between similarity metrics and the methods needed to optimize these metrics is explored. Chapter Nine summarizes the dissertation, and indicates avenues for future work and improvements. Biomedical image registration is an expanding field in which there is still much room for further discoveries, and in which the potential for clinical and research benefits are just beginning to be realized." @default.
- W2296910760 created "2016-06-24" @default.
- W2296910760 creator A5045337673 @default.
- W2296910760 creator A5085963119 @default.
- W2296910760 date "2002-01-01" @default.
- W2296910760 modified "2023-09-28" @default.
- W2296910760 title "Similarity metrics and optimization for multimodal biomedical image registration" @default.
- W2296910760 hasPublicationYear "2002" @default.
- W2296910760 type Work @default.
- W2296910760 sameAs 2296910760 @default.
- W2296910760 citedByCount "0" @default.
- W2296910760 crossrefType "journal-article" @default.
- W2296910760 hasAuthorship W2296910760A5045337673 @default.
- W2296910760 hasAuthorship W2296910760A5085963119 @default.
- W2296910760 hasConcept C106301342 @default.
- W2296910760 hasConcept C115961682 @default.
- W2296910760 hasConcept C121332964 @default.
- W2296910760 hasConcept C126255220 @default.
- W2296910760 hasConcept C137836250 @default.
- W2296910760 hasConcept C153180895 @default.
- W2296910760 hasConcept C154945302 @default.
- W2296910760 hasConcept C162324750 @default.
- W2296910760 hasConcept C166704113 @default.
- W2296910760 hasConcept C176217482 @default.
- W2296910760 hasConcept C21547014 @default.
- W2296910760 hasConcept C2776517306 @default.
- W2296910760 hasConcept C33923547 @default.
- W2296910760 hasConcept C41008148 @default.
- W2296910760 hasConcept C62520636 @default.
- W2296910760 hasConceptScore W2296910760C106301342 @default.
- W2296910760 hasConceptScore W2296910760C115961682 @default.
- W2296910760 hasConceptScore W2296910760C121332964 @default.
- W2296910760 hasConceptScore W2296910760C126255220 @default.
- W2296910760 hasConceptScore W2296910760C137836250 @default.
- W2296910760 hasConceptScore W2296910760C153180895 @default.
- W2296910760 hasConceptScore W2296910760C154945302 @default.
- W2296910760 hasConceptScore W2296910760C162324750 @default.
- W2296910760 hasConceptScore W2296910760C166704113 @default.
- W2296910760 hasConceptScore W2296910760C176217482 @default.
- W2296910760 hasConceptScore W2296910760C21547014 @default.
- W2296910760 hasConceptScore W2296910760C2776517306 @default.
- W2296910760 hasConceptScore W2296910760C33923547 @default.
- W2296910760 hasConceptScore W2296910760C41008148 @default.
- W2296910760 hasConceptScore W2296910760C62520636 @default.
- W2296910760 hasLocation W22969107601 @default.
- W2296910760 hasOpenAccess W2296910760 @default.
- W2296910760 hasPrimaryLocation W22969107601 @default.
- W2296910760 hasRelatedWork W115894686 @default.
- W2296910760 hasRelatedWork W151412094 @default.
- W2296910760 hasRelatedWork W1579277775 @default.
- W2296910760 hasRelatedWork W1591580636 @default.
- W2296910760 hasRelatedWork W167039926 @default.
- W2296910760 hasRelatedWork W168428984 @default.
- W2296910760 hasRelatedWork W1788773471 @default.
- W2296910760 hasRelatedWork W1979862119 @default.
- W2296910760 hasRelatedWork W1994600052 @default.
- W2296910760 hasRelatedWork W2144725853 @default.
- W2296910760 hasRelatedWork W2169844574 @default.
- W2296910760 hasRelatedWork W2243152716 @default.
- W2296910760 hasRelatedWork W2312517909 @default.
- W2296910760 hasRelatedWork W2779301734 @default.
- W2296910760 hasRelatedWork W2904780380 @default.
- W2296910760 hasRelatedWork W2929529982 @default.
- W2296910760 hasRelatedWork W3013699864 @default.
- W2296910760 hasRelatedWork W3114467166 @default.
- W2296910760 hasRelatedWork W3141988438 @default.
- W2296910760 hasRelatedWork W612494465 @default.
- W2296910760 isParatext "false" @default.
- W2296910760 isRetracted "false" @default.
- W2296910760 magId "2296910760" @default.
- W2296910760 workType "article" @default.