Matches in SemOpenAlex for { <https://semopenalex.org/work/W2296949257> ?p ?o ?g. }
- W2296949257 abstract "Background/Objectives: Quantitative Structure–Activity Relationship (QSAR) / Quantitative Structure – Property Relationship (QSPR) model is based on changes in molecular structure that would reflect changes in observed biological activity or physico-chemical property. Methods/Statistical analysis: QSAR/QSPR involves chemistry, biology and statistics fields for analysis. It has been widely accepted model for predicting association between molecular structure and its activity. Over the years many algorithms have been proposed and applied in QSAR/QSPR studies. Framework of model involves molecular structure (graph) representation, calculation of molecular descriptors (graph invariants) and multiple linear regression method is applied for analysis. Model has been validated through statistical parameters (R and R2). Findings: Methods involved in model development were reviewed for QSAR/QSPR studies. Multiple Linear Regression is one of the best methods for developing QSAR/QSPR model. This work focuses on developing QSPR model for predicting boiling point of alkyl benzene molecules using Multiple Linear Regression method. Wiener index, Harary Index, Hyper Wiener Index, Hyper Harary Index, and Randic index are calculated for analysis. The model has been validated by calculating R and R2 value. Various models were developed based on different combinations of descriptors to analysis which contribute best in predicting boiling point. Best fit model has been identified by developing model with different combinations of descriptors and rank them based on highest R and R2 value. Model with highest value has been taken for prediction of boiling point as best fit model as n (number of molecules) =14, R= 0.9934 and R2=0.9968. Applications/Improvements: Review on methods involved in prediction analysis has enlightened that model with reduced molecular descriptor subset and outlier detection method shows better performance by improving quality of the dataset Main application of QSAR/QSPR analysis is in drug discovery process. As it has reduced the time taken for lead identification and optimization in drug discovery process. Keywords: Descriptor, Descriptor Selection, Mathematical Model, Multiple Linear Regression, QSAR, QSPR" @default.
- W2296949257 created "2016-06-24" @default.
- W2296949257 creator A5022004626 @default.
- W2296949257 creator A5070197184 @default.
- W2296949257 date "2016-03-04" @default.
- W2296949257 modified "2023-10-17" @default.
- W2296949257 title "Computer Assisted QSAR/QSPR Approaches – A Review" @default.
- W2296949257 cites W1484609233 @default.
- W2296949257 cites W1522759371 @default.
- W2296949257 cites W1524332844 @default.
- W2296949257 cites W1531524766 @default.
- W2296949257 cites W1545231783 @default.
- W2296949257 cites W1571439140 @default.
- W2296949257 cites W1969962484 @default.
- W2296949257 cites W1973165925 @default.
- W2296949257 cites W1981673657 @default.
- W2296949257 cites W1995240112 @default.
- W2296949257 cites W2002100157 @default.
- W2296949257 cites W2007418061 @default.
- W2296949257 cites W2008898315 @default.
- W2296949257 cites W2012411921 @default.
- W2296949257 cites W2013573506 @default.
- W2296949257 cites W2015981295 @default.
- W2296949257 cites W2018991096 @default.
- W2296949257 cites W2021733249 @default.
- W2296949257 cites W2022480405 @default.
- W2296949257 cites W2025948031 @default.
- W2296949257 cites W2034562813 @default.
- W2296949257 cites W2035828432 @default.
- W2296949257 cites W2036596796 @default.
- W2296949257 cites W2039609876 @default.
- W2296949257 cites W2043767998 @default.
- W2296949257 cites W2052723761 @default.
- W2296949257 cites W2059687940 @default.
- W2296949257 cites W2060380565 @default.
- W2296949257 cites W2060836596 @default.
- W2296949257 cites W2074681440 @default.
- W2296949257 cites W2075613930 @default.
- W2296949257 cites W2081571909 @default.
- W2296949257 cites W2085006365 @default.
- W2296949257 cites W2086149458 @default.
- W2296949257 cites W2086493688 @default.
- W2296949257 cites W2089052299 @default.
- W2296949257 cites W2092539345 @default.
- W2296949257 cites W2098366846 @default.
- W2296949257 cites W2104556707 @default.
- W2296949257 cites W2113418007 @default.
- W2296949257 cites W2127643790 @default.
- W2296949257 cites W2128245586 @default.
- W2296949257 cites W2139808101 @default.
- W2296949257 cites W2144506960 @default.
- W2296949257 cites W2146725859 @default.
- W2296949257 cites W2152701363 @default.
- W2296949257 cites W2161782568 @default.
- W2296949257 cites W2162736339 @default.
- W2296949257 cites W2163646378 @default.
- W2296949257 cites W2169885786 @default.
- W2296949257 cites W2325310505 @default.
- W2296949257 cites W2989429641 @default.
- W2296949257 cites W2052675384 @default.
- W2296949257 doi "https://doi.org/10.17485/ijst/2016/v9i8/87901" @default.
- W2296949257 hasPublicationYear "2016" @default.
- W2296949257 type Work @default.
- W2296949257 sameAs 2296949257 @default.
- W2296949257 citedByCount "12" @default.
- W2296949257 countsByYear W22969492572016 @default.
- W2296949257 countsByYear W22969492572018 @default.
- W2296949257 countsByYear W22969492572019 @default.
- W2296949257 countsByYear W22969492572020 @default.
- W2296949257 countsByYear W22969492572021 @default.
- W2296949257 countsByYear W22969492572022 @default.
- W2296949257 countsByYear W22969492572023 @default.
- W2296949257 crossrefType "journal-article" @default.
- W2296949257 hasAuthorship W2296949257A5022004626 @default.
- W2296949257 hasAuthorship W2296949257A5070197184 @default.
- W2296949257 hasBestOaLocation W22969492571 @default.
- W2296949257 hasConcept C119857082 @default.
- W2296949257 hasConcept C132525143 @default.
- W2296949257 hasConcept C164126121 @default.
- W2296949257 hasConcept C164923092 @default.
- W2296949257 hasConcept C16640446 @default.
- W2296949257 hasConcept C178790620 @default.
- W2296949257 hasConcept C185592680 @default.
- W2296949257 hasConcept C188596812 @default.
- W2296949257 hasConcept C2780022179 @default.
- W2296949257 hasConcept C41008148 @default.
- W2296949257 hasConcept C48921125 @default.
- W2296949257 hasConcept C80444323 @default.
- W2296949257 hasConceptScore W2296949257C119857082 @default.
- W2296949257 hasConceptScore W2296949257C132525143 @default.
- W2296949257 hasConceptScore W2296949257C164126121 @default.
- W2296949257 hasConceptScore W2296949257C164923092 @default.
- W2296949257 hasConceptScore W2296949257C16640446 @default.
- W2296949257 hasConceptScore W2296949257C178790620 @default.
- W2296949257 hasConceptScore W2296949257C185592680 @default.
- W2296949257 hasConceptScore W2296949257C188596812 @default.
- W2296949257 hasConceptScore W2296949257C2780022179 @default.
- W2296949257 hasConceptScore W2296949257C41008148 @default.
- W2296949257 hasConceptScore W2296949257C48921125 @default.
- W2296949257 hasConceptScore W2296949257C80444323 @default.