Matches in SemOpenAlex for { <https://semopenalex.org/work/W2297030303> ?p ?o ?g. }
- W2297030303 endingPage "53" @default.
- W2297030303 startingPage "44" @default.
- W2297030303 abstract "This paper investigates the multivariate Poisson Lognormal modeling of counts for different types of crashes. This multivariate model can account for the overdispersion as well as positive and/or negative association between counts. Approximate Bayesian inference via the Integrated Nested Laplace Approximations significantly decreases computational time which makes it attractive for researchers. The models are developed for single vehicle, same direction and opposite direction crash types using three years (2009–2011) of crash data on Connecticut divided limited access highway segments. Annual average daily traffic, segment length, and road specific covariates (median type, shoulder width, area type, and on-ramp indicator) are used as predictor variables. The results from the multivariate Poisson Lognormal model suggest that an increase in the annual average daily traffic, segment length, and shoulder width together with urban area type and presence of an on-ramp are associated with in an increase in crashes. The median type covariate has a mixed effect for different median types on different type of crashes. The multivariate Poisson Lognormal model results are compared with the results obtained from two univariate regression models, univariate Poisson Lognormal and univariate negative binomial, with respect to model implications and precision on analysis of crash counts. The results show that the coefficient estimates of predictors have almost similar effects across all three crash type count models; however, standard errors in the multivariate Poisson Lognormal model are smaller than standard errors from other two univariate models in most cases. Results on posterior means for the correlation coefficients between crash types indicate that there are significant correlations exist between the crash count vectors, which indicate that ignoring such a correlation could possibly lead to incorrect variance estimation for the parameters. Results on predicted mean absolute error (PMAE) indicate that Bayesian multivariate Poisson Lognormal model provides up to 33% less prediction error compared to the univariate negative binomial model, although there are no significant difference of PMAE values between multivariate and univariate Poisson Lognormal models results. The analysis results demonstrated that the Bayesian multivariate Poisson Lognormal model provides correct estimates for parameters in predicting crash counts by accounting for correlations in the multivariate crash counts." @default.
- W2297030303 created "2016-06-24" @default.
- W2297030303 creator A5027512801 @default.
- W2297030303 creator A5047152646 @default.
- W2297030303 creator A5065848306 @default.
- W2297030303 creator A5065854596 @default.
- W2297030303 date "2016-03-01" @default.
- W2297030303 modified "2023-09-23" @default.
- W2297030303 title "Fast Bayesian inference for modeling multivariate crash counts" @default.
- W2297030303 cites W101236184 @default.
- W2297030303 cites W1976111068 @default.
- W2297030303 cites W1976961608 @default.
- W2297030303 cites W1980399291 @default.
- W2297030303 cites W1986965505 @default.
- W2297030303 cites W1997088137 @default.
- W2297030303 cites W2000280380 @default.
- W2297030303 cites W2017631088 @default.
- W2297030303 cites W2020708932 @default.
- W2297030303 cites W2038048419 @default.
- W2297030303 cites W2047905873 @default.
- W2297030303 cites W2055354074 @default.
- W2297030303 cites W2056367065 @default.
- W2297030303 cites W2062603300 @default.
- W2297030303 cites W2070876018 @default.
- W2297030303 cites W2074818071 @default.
- W2297030303 cites W2087828133 @default.
- W2297030303 cites W2119755537 @default.
- W2297030303 cites W2122596006 @default.
- W2297030303 cites W2124953793 @default.
- W2297030303 cites W2144898279 @default.
- W2297030303 cites W2146207491 @default.
- W2297030303 cites W2148619402 @default.
- W2297030303 cites W2149174640 @default.
- W2297030303 cites W2156952342 @default.
- W2297030303 cites W3126015327 @default.
- W2297030303 cites W4234017640 @default.
- W2297030303 doi "https://doi.org/10.1016/j.amar.2016.02.002" @default.
- W2297030303 hasPublicationYear "2016" @default.
- W2297030303 type Work @default.
- W2297030303 sameAs 2297030303 @default.
- W2297030303 citedByCount "42" @default.
- W2297030303 countsByYear W22970303032016 @default.
- W2297030303 countsByYear W22970303032017 @default.
- W2297030303 countsByYear W22970303032018 @default.
- W2297030303 countsByYear W22970303032019 @default.
- W2297030303 countsByYear W22970303032020 @default.
- W2297030303 countsByYear W22970303032021 @default.
- W2297030303 countsByYear W22970303032022 @default.
- W2297030303 countsByYear W22970303032023 @default.
- W2297030303 crossrefType "journal-article" @default.
- W2297030303 hasAuthorship W2297030303A5027512801 @default.
- W2297030303 hasAuthorship W2297030303A5047152646 @default.
- W2297030303 hasAuthorship W2297030303A5065848306 @default.
- W2297030303 hasAuthorship W2297030303A5065854596 @default.
- W2297030303 hasConcept C105795698 @default.
- W2297030303 hasConcept C107673813 @default.
- W2297030303 hasConcept C119857082 @default.
- W2297030303 hasConcept C149782125 @default.
- W2297030303 hasConcept C154945302 @default.
- W2297030303 hasConcept C160234255 @default.
- W2297030303 hasConcept C161584116 @default.
- W2297030303 hasConcept C183469790 @default.
- W2297030303 hasConcept C199360897 @default.
- W2297030303 hasConcept C2776214188 @default.
- W2297030303 hasConcept C3017944768 @default.
- W2297030303 hasConcept C33923547 @default.
- W2297030303 hasConcept C38180746 @default.
- W2297030303 hasConcept C41008148 @default.
- W2297030303 hasConcept C545542383 @default.
- W2297030303 hasConcept C71924100 @default.
- W2297030303 hasConceptScore W2297030303C105795698 @default.
- W2297030303 hasConceptScore W2297030303C107673813 @default.
- W2297030303 hasConceptScore W2297030303C119857082 @default.
- W2297030303 hasConceptScore W2297030303C149782125 @default.
- W2297030303 hasConceptScore W2297030303C154945302 @default.
- W2297030303 hasConceptScore W2297030303C160234255 @default.
- W2297030303 hasConceptScore W2297030303C161584116 @default.
- W2297030303 hasConceptScore W2297030303C183469790 @default.
- W2297030303 hasConceptScore W2297030303C199360897 @default.
- W2297030303 hasConceptScore W2297030303C2776214188 @default.
- W2297030303 hasConceptScore W2297030303C3017944768 @default.
- W2297030303 hasConceptScore W2297030303C33923547 @default.
- W2297030303 hasConceptScore W2297030303C38180746 @default.
- W2297030303 hasConceptScore W2297030303C41008148 @default.
- W2297030303 hasConceptScore W2297030303C545542383 @default.
- W2297030303 hasConceptScore W2297030303C71924100 @default.
- W2297030303 hasLocation W22970303031 @default.
- W2297030303 hasOpenAccess W2297030303 @default.
- W2297030303 hasPrimaryLocation W22970303031 @default.
- W2297030303 hasRelatedWork W2002240385 @default.
- W2297030303 hasRelatedWork W2048982464 @default.
- W2297030303 hasRelatedWork W2062009962 @default.
- W2297030303 hasRelatedWork W2172548244 @default.
- W2297030303 hasRelatedWork W2345666082 @default.
- W2297030303 hasRelatedWork W2753218748 @default.
- W2297030303 hasRelatedWork W2774409638 @default.
- W2297030303 hasRelatedWork W3122021489 @default.
- W2297030303 hasRelatedWork W4220961233 @default.