Matches in SemOpenAlex for { <https://semopenalex.org/work/W2297211715> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2297211715 abstract "Many methods have been developed and studied to detect damage through the change of dynamic response of a structure. Due to its capability to recognize pattern and to correlate non-linear and non-unique problem, Artificial Neural Networks (ANN) have received increasing attention for use in detecting damage in structures based on vibration modal parameters. Most successful works reported in the application of ANN for damage detection are limited to numerical examples and small controlled experimental examples only. This is because of the two main constraints for its practical application in detecting damage in real structures. They are: 1) the inevitable existence of uncertainties in vibration measurement data and finite element modeling of the structure, which may lead to erroneous prediction of structural conditions; and 2) enormous computational effort required to reliably train an ANN model when it involves structures with many degrees of freedom. Therefore, most applications of ANN in damage detection are limited to structure systems with a small number of degrees of freedom and quite significant damage levels. In this thesis, a probabilistic ANN model is proposed to include into consideration the uncertainties in finite element model and measured data. Rossenblueth's point estimate method is used to reduce the calculations in training and testing the probabilistic ANN model. The accuracy of the probabilistic model is verified by Monte Carlo simulations. Using the probabilistic ANN model, the statistics of the stiffness parameters can be predicted which are used to calculate the probability of damage existence (PDE) in each structural member. The reliability and efficiency of this method is demonstrated using both numerical and experimental examples. In addition, a parametric study is carried out to investigate the sensitivity of the proposed method to different damage levels and to different uncertainty levels. As an ANN model requires enormous computational effort in training the ANN model when the number of degrees of freedom is relatively large, a substructuring approach employing multi-stage ANN is proposed to tackle the problem. Through this method, a structure is divided to several substructures and each substructure is assessed separately with independently trained ANN model for the substructure. Once the damaged substructures are identified, second-stage ANN models are trained for these substructures to identify the damage locations and severities of the structural ii element in the substructures. Both the numerical and experimental examples are used to demonstrate the probabilistic multi-stage ANN methods. It is found that this substructuring ANN approach greatly reduces the computational effort while increasing the damage detectability because fine element mesh can be used. It is also found that the probabilistic model gives better damage identification than the deterministic approach. A sensitivity analysis is also conducted to investigate the effect of substructure size, support condition and different uncertainty levels on the damage detectability of the proposed method. The results demonstrated that the detectibility level of the proposed method is independent of the structure type, but dependent on the boundary condition, substructure size and uncertainty level." @default.
- W2297211715 created "2016-06-24" @default.
- W2297211715 creator A5049357575 @default.
- W2297211715 date "2009-01-01" @default.
- W2297211715 modified "2023-09-26" @default.
- W2297211715 title "Structural condition monitoring and damage identification with artificial neural network" @default.
- W2297211715 hasPublicationYear "2009" @default.
- W2297211715 type Work @default.
- W2297211715 sameAs 2297211715 @default.
- W2297211715 citedByCount "0" @default.
- W2297211715 crossrefType "dissertation" @default.
- W2297211715 hasAuthorship W2297211715A5049357575 @default.
- W2297211715 hasConcept C105795698 @default.
- W2297211715 hasConcept C11413529 @default.
- W2297211715 hasConcept C114289077 @default.
- W2297211715 hasConcept C116834253 @default.
- W2297211715 hasConcept C119247159 @default.
- W2297211715 hasConcept C119857082 @default.
- W2297211715 hasConcept C121332964 @default.
- W2297211715 hasConcept C124101348 @default.
- W2297211715 hasConcept C127413603 @default.
- W2297211715 hasConcept C135628077 @default.
- W2297211715 hasConcept C154945302 @default.
- W2297211715 hasConcept C163258240 @default.
- W2297211715 hasConcept C185592680 @default.
- W2297211715 hasConcept C188027245 @default.
- W2297211715 hasConcept C19499675 @default.
- W2297211715 hasConcept C208081375 @default.
- W2297211715 hasConcept C2776247918 @default.
- W2297211715 hasConcept C2779372316 @default.
- W2297211715 hasConcept C2780009758 @default.
- W2297211715 hasConcept C32230216 @default.
- W2297211715 hasConcept C33923547 @default.
- W2297211715 hasConcept C41008148 @default.
- W2297211715 hasConcept C43214815 @default.
- W2297211715 hasConcept C49937458 @default.
- W2297211715 hasConcept C50644808 @default.
- W2297211715 hasConcept C59822182 @default.
- W2297211715 hasConcept C62520636 @default.
- W2297211715 hasConcept C66938386 @default.
- W2297211715 hasConcept C71139939 @default.
- W2297211715 hasConcept C86803240 @default.
- W2297211715 hasConceptScore W2297211715C105795698 @default.
- W2297211715 hasConceptScore W2297211715C11413529 @default.
- W2297211715 hasConceptScore W2297211715C114289077 @default.
- W2297211715 hasConceptScore W2297211715C116834253 @default.
- W2297211715 hasConceptScore W2297211715C119247159 @default.
- W2297211715 hasConceptScore W2297211715C119857082 @default.
- W2297211715 hasConceptScore W2297211715C121332964 @default.
- W2297211715 hasConceptScore W2297211715C124101348 @default.
- W2297211715 hasConceptScore W2297211715C127413603 @default.
- W2297211715 hasConceptScore W2297211715C135628077 @default.
- W2297211715 hasConceptScore W2297211715C154945302 @default.
- W2297211715 hasConceptScore W2297211715C163258240 @default.
- W2297211715 hasConceptScore W2297211715C185592680 @default.
- W2297211715 hasConceptScore W2297211715C188027245 @default.
- W2297211715 hasConceptScore W2297211715C19499675 @default.
- W2297211715 hasConceptScore W2297211715C208081375 @default.
- W2297211715 hasConceptScore W2297211715C2776247918 @default.
- W2297211715 hasConceptScore W2297211715C2779372316 @default.
- W2297211715 hasConceptScore W2297211715C2780009758 @default.
- W2297211715 hasConceptScore W2297211715C32230216 @default.
- W2297211715 hasConceptScore W2297211715C33923547 @default.
- W2297211715 hasConceptScore W2297211715C41008148 @default.
- W2297211715 hasConceptScore W2297211715C43214815 @default.
- W2297211715 hasConceptScore W2297211715C49937458 @default.
- W2297211715 hasConceptScore W2297211715C50644808 @default.
- W2297211715 hasConceptScore W2297211715C59822182 @default.
- W2297211715 hasConceptScore W2297211715C62520636 @default.
- W2297211715 hasConceptScore W2297211715C66938386 @default.
- W2297211715 hasConceptScore W2297211715C71139939 @default.
- W2297211715 hasConceptScore W2297211715C86803240 @default.
- W2297211715 hasLocation W22972117151 @default.
- W2297211715 hasOpenAccess W2297211715 @default.
- W2297211715 hasPrimaryLocation W22972117151 @default.
- W2297211715 hasRelatedWork W13037105 @default.
- W2297211715 hasRelatedWork W1970590690 @default.
- W2297211715 hasRelatedWork W1998125990 @default.
- W2297211715 hasRelatedWork W2003005371 @default.
- W2297211715 hasRelatedWork W2052103100 @default.
- W2297211715 hasRelatedWork W2069720869 @default.
- W2297211715 hasRelatedWork W2094363207 @default.
- W2297211715 hasRelatedWork W2289438788 @default.
- W2297211715 hasRelatedWork W2331806743 @default.
- W2297211715 hasRelatedWork W2556429591 @default.
- W2297211715 hasRelatedWork W2736829710 @default.
- W2297211715 hasRelatedWork W2739508884 @default.
- W2297211715 hasRelatedWork W2896211964 @default.
- W2297211715 hasRelatedWork W2963409592 @default.
- W2297211715 hasRelatedWork W2970073247 @default.
- W2297211715 hasRelatedWork W2973319106 @default.
- W2297211715 hasRelatedWork W3015141831 @default.
- W2297211715 hasRelatedWork W3081065019 @default.
- W2297211715 hasRelatedWork W3097142707 @default.
- W2297211715 hasRelatedWork W3203440379 @default.
- W2297211715 isParatext "false" @default.
- W2297211715 isRetracted "false" @default.
- W2297211715 magId "2297211715" @default.
- W2297211715 workType "dissertation" @default.