Matches in SemOpenAlex for { <https://semopenalex.org/work/W2297633831> ?p ?o ?g. }
- W2297633831 abstract "The main energy providing reaction systems in living cells, for example the photosynthesis or the respiratory chain, are based on long range proton transfer (LRPT) reactions. Even since these LRPT reactions have been heavily investigated in the last decades, the mechanism of these reactions is still not completely understood. The reaction kinetics of the LRPT are under heavy discussion and it is not clear, whether the reorientation of the hydrogen bond network (HBN)or the electrostatic barrier for the charge transfer is rate limiting. The main purpose of this work is to investigate the dynamics of chemical reactions inside of proteins, focused on long range proton transfer reactions. Electron transfer reactions, rotations of water molecules or conformational changes of the protein are also considered. The developed sequential dynamical Monte Carlo (SDMC) method is applicable to almost all kinds of chemical reactions. For all proton transfer reactions, the HBN of a protein plays a major role. Protons are transferred along such hydrogen bonds. Therefore, knowledge about the hydrogen bond network of a protein is crucial for the simulation of LRPT systems. The HBN can be calculated from the protein structure and the rotational state of the amino acid side chains. The reaction rate can be calculated from the electrostatic energies of the participating proton donor and acceptor groups. These two criteria are combined for the decision if a proton transfer between two molecules is possible and how fast this transfer would happen. While the calculation of electrostatic energies of protonatable amino acid side chains or relevant cofactors in proteins (among them also water molecules) is already solved - implemented in various programs - the remaining tasks - calculating the hydrogen bond network followed by calculating the reaction rates - were solved during this work. Before the hydrogen bond network and the electrostatic energies could be calculated, the lack of water positions in many available crystallographically resolved protein structures made it necessary to develop an algorithm to detect internal cavities in proteins and fill these cavities with water molecules. The derived water positions could be included in the electrostatic calculations as well as in the calculation of the HBN. The simulation of the LRPT in Gramicidin A (gA) compared to experimental data of the proton transfer in this polypeptide showed the possibilities of the simulation of the LRPT by the SDMC algorithm. The promising results encouraged us to investigate the mechanism of the LRPT, especially, if the reorientation of the HBN or the electrostatic energy barrier of the charge transfer is rate limiting for the LRPT. The results indicate, that both effects influence the LRPT and none of them is exclusively responsible for the LRPT rate. Further analysis of the hydrogen bond network topology showed that graph algorithms can be used to analyze these networks. Hydrogen bond networks can be clustered into regions which are close connected to each other.…" @default.
- W2297633831 created "2016-06-24" @default.
- W2297633831 creator A5065020186 @default.
- W2297633831 date "2010-01-01" @default.
- W2297633831 modified "2023-09-27" @default.
- W2297633831 title "Proton Transfer Networks and the Mechanism of Long Range Proton Transfer in Proteins" @default.
- W2297633831 cites W1592614241 @default.
- W2297633831 cites W1968352350 @default.
- W2297633831 cites W1971421925 @default.
- W2297633831 cites W1978214481 @default.
- W2297633831 cites W1981568245 @default.
- W2297633831 cites W1982220024 @default.
- W2297633831 cites W1982653036 @default.
- W2297633831 cites W1988433237 @default.
- W2297633831 cites W1997285622 @default.
- W2297633831 cites W1997697274 @default.
- W2297633831 cites W2002302207 @default.
- W2297633831 cites W2006550844 @default.
- W2297633831 cites W2009570821 @default.
- W2297633831 cites W2012023753 @default.
- W2297633831 cites W2013855189 @default.
- W2297633831 cites W2016920258 @default.
- W2297633831 cites W2017344143 @default.
- W2297633831 cites W2029449965 @default.
- W2297633831 cites W2029667189 @default.
- W2297633831 cites W2036391455 @default.
- W2297633831 cites W2038054791 @default.
- W2297633831 cites W2045643881 @default.
- W2297633831 cites W2054371325 @default.
- W2297633831 cites W2057151871 @default.
- W2297633831 cites W2060065716 @default.
- W2297633831 cites W2067095344 @default.
- W2297633831 cites W2070423522 @default.
- W2297633831 cites W2071540904 @default.
- W2297633831 cites W2074515736 @default.
- W2297633831 cites W2084311198 @default.
- W2297633831 cites W2092290445 @default.
- W2297633831 cites W2095293504 @default.
- W2297633831 cites W2096525273 @default.
- W2297633831 cites W2107244464 @default.
- W2297633831 cites W2108658741 @default.
- W2297633831 cites W2124540342 @default.
- W2297633831 cites W2144081223 @default.
- W2297633831 cites W2150361933 @default.
- W2297633831 cites W2151831732 @default.
- W2297633831 cites W2154848307 @default.
- W2297633831 cites W2158266834 @default.
- W2297633831 cites W2158714788 @default.
- W2297633831 cites W2161269752 @default.
- W2297633831 cites W2162166182 @default.
- W2297633831 cites W2164428545 @default.
- W2297633831 cites W294782414 @default.
- W2297633831 cites W3147254695 @default.
- W2297633831 cites W350323720 @default.
- W2297633831 hasPublicationYear "2010" @default.
- W2297633831 type Work @default.
- W2297633831 sameAs 2297633831 @default.
- W2297633831 citedByCount "0" @default.
- W2297633831 crossrefType "dissertation" @default.
- W2297633831 hasAuthorship W2297633831A5065020186 @default.
- W2297633831 hasConcept C110010208 @default.
- W2297633831 hasConcept C112887158 @default.
- W2297633831 hasConcept C121332964 @default.
- W2297633831 hasConcept C123669783 @default.
- W2297633831 hasConcept C147597530 @default.
- W2297633831 hasConcept C159467904 @default.
- W2297633831 hasConcept C161790260 @default.
- W2297633831 hasConcept C177801218 @default.
- W2297633831 hasConcept C178790620 @default.
- W2297633831 hasConcept C185592680 @default.
- W2297633831 hasConcept C18762648 @default.
- W2297633831 hasConcept C188231169 @default.
- W2297633831 hasConcept C32909587 @default.
- W2297633831 hasConcept C54516573 @default.
- W2297633831 hasConcept C62520636 @default.
- W2297633831 hasConcept C65024703 @default.
- W2297633831 hasConcept C75473681 @default.
- W2297633831 hasConcept C97355855 @default.
- W2297633831 hasConceptScore W2297633831C110010208 @default.
- W2297633831 hasConceptScore W2297633831C112887158 @default.
- W2297633831 hasConceptScore W2297633831C121332964 @default.
- W2297633831 hasConceptScore W2297633831C123669783 @default.
- W2297633831 hasConceptScore W2297633831C147597530 @default.
- W2297633831 hasConceptScore W2297633831C159467904 @default.
- W2297633831 hasConceptScore W2297633831C161790260 @default.
- W2297633831 hasConceptScore W2297633831C177801218 @default.
- W2297633831 hasConceptScore W2297633831C178790620 @default.
- W2297633831 hasConceptScore W2297633831C185592680 @default.
- W2297633831 hasConceptScore W2297633831C18762648 @default.
- W2297633831 hasConceptScore W2297633831C188231169 @default.
- W2297633831 hasConceptScore W2297633831C32909587 @default.
- W2297633831 hasConceptScore W2297633831C54516573 @default.
- W2297633831 hasConceptScore W2297633831C62520636 @default.
- W2297633831 hasConceptScore W2297633831C65024703 @default.
- W2297633831 hasConceptScore W2297633831C75473681 @default.
- W2297633831 hasConceptScore W2297633831C97355855 @default.
- W2297633831 hasLocation W22976338311 @default.
- W2297633831 hasOpenAccess W2297633831 @default.
- W2297633831 hasPrimaryLocation W22976338311 @default.
- W2297633831 hasRelatedWork W1975778615 @default.