Matches in SemOpenAlex for { <https://semopenalex.org/work/W2298048087> ?p ?o ?g. }
- W2298048087 endingPage "783" @default.
- W2298048087 startingPage "775" @default.
- W2298048087 abstract "ConspectusThe unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a “mission impossible”. Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start?A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area is the development and application of the mass cytometer, which fully exploited the multiplexing potential of metal stable isotope tagging. It realized the simultaneous detection of dozens of parameters in single cells, accurate immunophenotyping in cell populations, through modeling of intracellular signaling network and undoubted discrimination of function and connection of cell subsets. Metal stable isotope tagging has great potential applications in hematopoiesis, immunology, stem cells, cancer, and drug screening related research and opened a post-fluorescence era of cytometry.Herein, we review the development of biomolecule quantification using metal stable isotope tagging. Particularly, the power of multiplex and absolute quantification is demonstrated. We address the advantages, applicable situations, and limitations of metal stable isotope tagging strategies and propose suggestions for future developments. The transfer of enzymatic or fluorescent tagging to metal stable isotope tagging may occur in many aspects of biological and clinical practices in the near future, just as the revolution from radioactive isotope tagging to fluorescent tagging happened in the past." @default.
- W2298048087 created "2016-06-24" @default.
- W2298048087 creator A5027962944 @default.
- W2298048087 creator A5039249228 @default.
- W2298048087 creator A5044296832 @default.
- W2298048087 creator A5056146550 @default.
- W2298048087 creator A5060168731 @default.
- W2298048087 creator A5071884526 @default.
- W2298048087 date "2016-03-18" @default.
- W2298048087 modified "2023-10-15" @default.
- W2298048087 title "Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules" @default.
- W2298048087 cites W1859673005 @default.
- W2298048087 cites W1964727438 @default.
- W2298048087 cites W1967765289 @default.
- W2298048087 cites W1972274790 @default.
- W2298048087 cites W1974430267 @default.
- W2298048087 cites W1979273632 @default.
- W2298048087 cites W1981437210 @default.
- W2298048087 cites W1982496870 @default.
- W2298048087 cites W1986671417 @default.
- W2298048087 cites W1987449160 @default.
- W2298048087 cites W1992047170 @default.
- W2298048087 cites W1992930441 @default.
- W2298048087 cites W1993287310 @default.
- W2298048087 cites W1996272971 @default.
- W2298048087 cites W2009827668 @default.
- W2298048087 cites W2014345069 @default.
- W2298048087 cites W2024191468 @default.
- W2298048087 cites W2024626836 @default.
- W2298048087 cites W2024879253 @default.
- W2298048087 cites W2028994036 @default.
- W2298048087 cites W2037550429 @default.
- W2298048087 cites W2038254572 @default.
- W2298048087 cites W2042118914 @default.
- W2298048087 cites W2043565262 @default.
- W2298048087 cites W2044655548 @default.
- W2298048087 cites W2049978823 @default.
- W2298048087 cites W2053129129 @default.
- W2298048087 cites W2059165149 @default.
- W2298048087 cites W2067810849 @default.
- W2298048087 cites W2072723772 @default.
- W2298048087 cites W2085651163 @default.
- W2298048087 cites W2088575565 @default.
- W2298048087 cites W2090448680 @default.
- W2298048087 cites W2090508807 @default.
- W2298048087 cites W2097693377 @default.
- W2298048087 cites W2099701395 @default.
- W2298048087 cites W2102750797 @default.
- W2298048087 cites W2110808396 @default.
- W2298048087 cites W2121802141 @default.
- W2298048087 cites W2123474966 @default.
- W2298048087 cites W2123877425 @default.
- W2298048087 cites W2126273383 @default.
- W2298048087 cites W2126447322 @default.
- W2298048087 cites W2134328958 @default.
- W2298048087 cites W2135073950 @default.
- W2298048087 cites W2140623667 @default.
- W2298048087 cites W2144454447 @default.
- W2298048087 cites W2151657079 @default.
- W2298048087 cites W2163916491 @default.
- W2298048087 cites W2164109739 @default.
- W2298048087 cites W2166611826 @default.
- W2298048087 cites W2316496582 @default.
- W2298048087 cites W2325115189 @default.
- W2298048087 cites W2328058100 @default.
- W2298048087 cites W2328738132 @default.
- W2298048087 cites W2328919628 @default.
- W2298048087 cites W2331965236 @default.
- W2298048087 doi "https://doi.org/10.1021/acs.accounts.5b00509" @default.
- W2298048087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26990857" @default.
- W2298048087 hasPublicationYear "2016" @default.
- W2298048087 type Work @default.
- W2298048087 sameAs 2298048087 @default.
- W2298048087 citedByCount "119" @default.
- W2298048087 countsByYear W22980480872016 @default.
- W2298048087 countsByYear W22980480872017 @default.
- W2298048087 countsByYear W22980480872018 @default.
- W2298048087 countsByYear W22980480872019 @default.
- W2298048087 countsByYear W22980480872020 @default.
- W2298048087 countsByYear W22980480872021 @default.
- W2298048087 countsByYear W22980480872022 @default.
- W2298048087 countsByYear W22980480872023 @default.
- W2298048087 crossrefType "journal-article" @default.
- W2298048087 hasAuthorship W2298048087A5027962944 @default.
- W2298048087 hasAuthorship W2298048087A5039249228 @default.
- W2298048087 hasAuthorship W2298048087A5044296832 @default.
- W2298048087 hasAuthorship W2298048087A5056146550 @default.
- W2298048087 hasAuthorship W2298048087A5060168731 @default.
- W2298048087 hasAuthorship W2298048087A5071884526 @default.
- W2298048087 hasConcept C121332964 @default.
- W2298048087 hasConcept C159654299 @default.
- W2298048087 hasConcept C162356407 @default.
- W2298048087 hasConcept C164304813 @default.
- W2298048087 hasConcept C165697059 @default.
- W2298048087 hasConcept C171250308 @default.
- W2298048087 hasConcept C185592680 @default.
- W2298048087 hasConcept C192562407 @default.
- W2298048087 hasConcept C203014093 @default.