Matches in SemOpenAlex for { <https://semopenalex.org/work/W2298347670> ?p ?o ?g. }
Showing items 1 to 38 of
38
with 100 items per page.
- W2298347670 endingPage "xxviii" @default.
- W2298347670 startingPage "xxiii" @default.
- W2298347670 abstract "Linear Algebra Linear algebra studies linear transformations and vector spaces, or in another language, matrix multiplication and the vector space R n . You should know how to translate between the language of abstract vector spaces and the language of matrices. In particular, given a basis for a vector space, you should know how to represent any linear transformation as a matrix. Further, given two matrices, you should know how to determine if these matrices actually represent the same linear transformation, but under different choices of bases. The key theorem of linear algebra is a statement that gives many equivalent descriptions for when a matrix is invertible. These equivalences should be known cold. You should also know why eigenvectors and eigenvalues occur naturally in linear algebra. Real Analysis The basic definitions of a limit, continuity, differentiation and integration should be known and understood in terms of ∈'s and δ's. Using this ∈ and δ language, you should be comfortable with the idea of uniform convergence of functions. Differentiating Vector-Valued Functions The goal of the Inverse Function Theorem is to show that a differentiable function f : R n → R n is locally invertible if and only if the determinant of its derivative (the Jacobian) is non-zero. You should be comfortable with what it means for a vector-valued function to be differentiable, why its derivative must be a linear map (and hence representable as a matrix, the Jacobian) and how to compute the Jacobian." @default.
- W2298347670 created "2016-06-24" @default.
- W2298347670 creator A5039807393 @default.
- W2298347670 creator A5084340097 @default.
- W2298347670 date "2001-11-12" @default.
- W2298347670 modified "2023-09-27" @default.
- W2298347670 title "Brief Summaries of Topics" @default.
- W2298347670 doi "https://doi.org/10.1017/cbo9780511800498.003" @default.
- W2298347670 hasPublicationYear "2001" @default.
- W2298347670 type Work @default.
- W2298347670 sameAs 2298347670 @default.
- W2298347670 citedByCount "0" @default.
- W2298347670 crossrefType "book-chapter" @default.
- W2298347670 hasAuthorship W2298347670A5039807393 @default.
- W2298347670 hasAuthorship W2298347670A5084340097 @default.
- W2298347670 hasConcept C23123220 @default.
- W2298347670 hasConcept C41008148 @default.
- W2298347670 hasConceptScore W2298347670C23123220 @default.
- W2298347670 hasConceptScore W2298347670C41008148 @default.
- W2298347670 hasLocation W22983476701 @default.
- W2298347670 hasOpenAccess W2298347670 @default.
- W2298347670 hasPrimaryLocation W22983476701 @default.
- W2298347670 hasRelatedWork W2101955803 @default.
- W2298347670 hasRelatedWork W2115485936 @default.
- W2298347670 hasRelatedWork W2119135658 @default.
- W2298347670 hasRelatedWork W2119214692 @default.
- W2298347670 hasRelatedWork W2144190808 @default.
- W2298347670 hasRelatedWork W2357241418 @default.
- W2298347670 hasRelatedWork W2366644548 @default.
- W2298347670 hasRelatedWork W2376314740 @default.
- W2298347670 hasRelatedWork W2384888906 @default.
- W2298347670 hasRelatedWork W2469626427 @default.
- W2298347670 isParatext "false" @default.
- W2298347670 isRetracted "false" @default.
- W2298347670 magId "2298347670" @default.
- W2298347670 workType "book-chapter" @default.