Matches in SemOpenAlex for { <https://semopenalex.org/work/W2298532145> ?p ?o ?g. }
- W2298532145 endingPage "34" @default.
- W2298532145 startingPage "19" @default.
- W2298532145 abstract "Given a set of images containing objects from the same category, the task of image co-localization is to identify and localize each instance. This paper shows that this problem can be solved by a simple but intriguing idea, that is, a common object detector can be learnt by making its detection confidence scores distributed like those of a strongly supervised detector. More specifically, we observe that given a set of object proposals extracted from an image that contains the object of interest, an accurate strongly supervised object detector should give high scores to only a small minority of proposals, and low scores to most of them. Thus, we devise an entropy-based objective function to enforce the above property when learning the common object detector. Once the detector is learnt, we resort to a segmentation approach to refine the localization. We show that despite its simplicity, our approach outperforms state-of-the-arts." @default.
- W2298532145 created "2016-06-24" @default.
- W2298532145 creator A5006294869 @default.
- W2298532145 creator A5028024287 @default.
- W2298532145 creator A5044399794 @default.
- W2298532145 creator A5070976480 @default.
- W2298532145 date "2016-01-01" @default.
- W2298532145 modified "2023-10-02" @default.
- W2298532145 title "Image Co-localization by Mimicking a Good Detector’s Confidence Score Distribution" @default.
- W2298532145 cites W1536680647 @default.
- W2298532145 cites W1727982597 @default.
- W2298532145 cites W1832500336 @default.
- W2298532145 cites W1898560071 @default.
- W2298532145 cites W1919709169 @default.
- W2298532145 cites W1934621328 @default.
- W2298532145 cites W1958328135 @default.
- W2298532145 cites W1966601141 @default.
- W2298532145 cites W1973054923 @default.
- W2298532145 cites W1996140089 @default.
- W2298532145 cites W1999478155 @default.
- W2298532145 cites W2002754212 @default.
- W2298532145 cites W2016016818 @default.
- W2298532145 cites W2020477327 @default.
- W2298532145 cites W2037227137 @default.
- W2298532145 cites W2039507552 @default.
- W2298532145 cites W2060475276 @default.
- W2298532145 cites W2061629163 @default.
- W2298532145 cites W2079267072 @default.
- W2298532145 cites W2086052791 @default.
- W2298532145 cites W2088049833 @default.
- W2298532145 cites W2108598243 @default.
- W2298532145 cites W2109255472 @default.
- W2298532145 cites W2117539524 @default.
- W2298532145 cites W2124351162 @default.
- W2298532145 cites W2143516773 @default.
- W2298532145 cites W2155893237 @default.
- W2298532145 cites W2183182206 @default.
- W2298532145 cites W2220111505 @default.
- W2298532145 cites W2248800885 @default.
- W2298532145 cites W7746136 @default.
- W2298532145 cites W95926497 @default.
- W2298532145 doi "https://doi.org/10.1007/978-3-319-46475-6_2" @default.
- W2298532145 hasPublicationYear "2016" @default.
- W2298532145 type Work @default.
- W2298532145 sameAs 2298532145 @default.
- W2298532145 citedByCount "18" @default.
- W2298532145 countsByYear W22985321452017 @default.
- W2298532145 countsByYear W22985321452018 @default.
- W2298532145 countsByYear W22985321452019 @default.
- W2298532145 countsByYear W22985321452020 @default.
- W2298532145 countsByYear W22985321452022 @default.
- W2298532145 crossrefType "book-chapter" @default.
- W2298532145 hasAuthorship W2298532145A5006294869 @default.
- W2298532145 hasAuthorship W2298532145A5028024287 @default.
- W2298532145 hasAuthorship W2298532145A5044399794 @default.
- W2298532145 hasAuthorship W2298532145A5070976480 @default.
- W2298532145 hasBestOaLocation W22985321452 @default.
- W2298532145 hasConcept C106301342 @default.
- W2298532145 hasConcept C115961682 @default.
- W2298532145 hasConcept C121332964 @default.
- W2298532145 hasConcept C14036430 @default.
- W2298532145 hasConcept C153180895 @default.
- W2298532145 hasConcept C154945302 @default.
- W2298532145 hasConcept C177264268 @default.
- W2298532145 hasConcept C199360897 @default.
- W2298532145 hasConcept C2776151529 @default.
- W2298532145 hasConcept C2781238097 @default.
- W2298532145 hasConcept C31972630 @default.
- W2298532145 hasConcept C41008148 @default.
- W2298532145 hasConcept C62520636 @default.
- W2298532145 hasConcept C76155785 @default.
- W2298532145 hasConcept C78458016 @default.
- W2298532145 hasConcept C86803240 @default.
- W2298532145 hasConcept C89600930 @default.
- W2298532145 hasConcept C94915269 @default.
- W2298532145 hasConcept C9679016 @default.
- W2298532145 hasConceptScore W2298532145C106301342 @default.
- W2298532145 hasConceptScore W2298532145C115961682 @default.
- W2298532145 hasConceptScore W2298532145C121332964 @default.
- W2298532145 hasConceptScore W2298532145C14036430 @default.
- W2298532145 hasConceptScore W2298532145C153180895 @default.
- W2298532145 hasConceptScore W2298532145C154945302 @default.
- W2298532145 hasConceptScore W2298532145C177264268 @default.
- W2298532145 hasConceptScore W2298532145C199360897 @default.
- W2298532145 hasConceptScore W2298532145C2776151529 @default.
- W2298532145 hasConceptScore W2298532145C2781238097 @default.
- W2298532145 hasConceptScore W2298532145C31972630 @default.
- W2298532145 hasConceptScore W2298532145C41008148 @default.
- W2298532145 hasConceptScore W2298532145C62520636 @default.
- W2298532145 hasConceptScore W2298532145C76155785 @default.
- W2298532145 hasConceptScore W2298532145C78458016 @default.
- W2298532145 hasConceptScore W2298532145C86803240 @default.
- W2298532145 hasConceptScore W2298532145C89600930 @default.
- W2298532145 hasConceptScore W2298532145C94915269 @default.
- W2298532145 hasConceptScore W2298532145C9679016 @default.
- W2298532145 hasLocation W22985321451 @default.
- W2298532145 hasLocation W22985321452 @default.
- W2298532145 hasOpenAccess W2298532145 @default.