Matches in SemOpenAlex for { <https://semopenalex.org/work/W2298982800> ?p ?o ?g. }
- W2298982800 endingPage "81" @default.
- W2298982800 startingPage "70" @default.
- W2298982800 abstract "In recent years, sparse recognition (SR) has increasingly become an emerging pattern recognition method. Because of its excellent recognition performance for some traditionally difficult problems (such as occluded or corrupted face recognition), several classical SR ideas (such as sparse representation-based classification (SRC) or dictionary-based sparse recognition (DSR)) have been the focus of research in the intelligent information field. However, for image recognition against actual backgrounds, there are still problems with these mainstream SR methods. Hence, this paper presents a new SR method which combines the advantages of both SRC and DSR. In the pre-processing, visual saliency information (VSI) for images with complex scenes is extracted by introducing the saliency map as a tool. Then, DSR is used to develop intra-class dictionary learning for the VSI data. The last step is to solve a l1-norm optimization problem to give the SR result by generating a global recognition matrix with the SRC mechanism. Experimental results show that the proposed method for ‘real world’ image recognition provides advantages over mainstream SR methods, in recognition rate and computation time cost." @default.
- W2298982800 created "2016-06-24" @default.
- W2298982800 creator A5034434932 @default.
- W2298982800 creator A5081669641 @default.
- W2298982800 date "2016-07-01" @default.
- W2298982800 modified "2023-10-16" @default.
- W2298982800 title "Sparse recognition via intra-class dictionary learning using visual saliency information" @default.
- W2298982800 cites W1963932623 @default.
- W2298982800 cites W1975546869 @default.
- W2298982800 cites W1986931325 @default.
- W2298982800 cites W1991167985 @default.
- W2298982800 cites W1999101396 @default.
- W2298982800 cites W2020236530 @default.
- W2298982800 cites W2022257069 @default.
- W2298982800 cites W2031402837 @default.
- W2298982800 cites W2041719651 @default.
- W2298982800 cites W2046456242 @default.
- W2298982800 cites W2050874697 @default.
- W2298982800 cites W2055180303 @default.
- W2298982800 cites W2059196018 @default.
- W2298982800 cites W2065337811 @default.
- W2298982800 cites W2070391012 @default.
- W2298982800 cites W2073578547 @default.
- W2298982800 cites W2073940236 @default.
- W2298982800 cites W2095044247 @default.
- W2298982800 cites W2097518502 @default.
- W2298982800 cites W2101149304 @default.
- W2298982800 cites W2115318452 @default.
- W2298982800 cites W2115429828 @default.
- W2298982800 cites W2116148865 @default.
- W2298982800 cites W2117606586 @default.
- W2298982800 cites W2118425207 @default.
- W2298982800 cites W2118435112 @default.
- W2298982800 cites W2128272608 @default.
- W2298982800 cites W2129638195 @default.
- W2298982800 cites W2129812935 @default.
- W2298982800 cites W2134383016 @default.
- W2298982800 cites W2135431879 @default.
- W2298982800 cites W2136990130 @default.
- W2298982800 cites W2141520175 @default.
- W2298982800 cites W2143254810 @default.
- W2298982800 cites W2145096794 @default.
- W2298982800 cites W2149270675 @default.
- W2298982800 cites W2151655373 @default.
- W2298982800 cites W2151693816 @default.
- W2298982800 cites W2152161678 @default.
- W2298982800 cites W2156329326 @default.
- W2298982800 cites W2160547390 @default.
- W2298982800 cites W2162915993 @default.
- W2298982800 cites W2163352848 @default.
- W2298982800 cites W4250955649 @default.
- W2298982800 doi "https://doi.org/10.1016/j.neucom.2016.01.092" @default.
- W2298982800 hasPublicationYear "2016" @default.
- W2298982800 type Work @default.
- W2298982800 sameAs 2298982800 @default.
- W2298982800 citedByCount "6" @default.
- W2298982800 countsByYear W22989828002017 @default.
- W2298982800 countsByYear W22989828002019 @default.
- W2298982800 countsByYear W22989828002020 @default.
- W2298982800 countsByYear W22989828002022 @default.
- W2298982800 crossrefType "journal-article" @default.
- W2298982800 hasAuthorship W2298982800A5034434932 @default.
- W2298982800 hasAuthorship W2298982800A5081669641 @default.
- W2298982800 hasConcept C11413529 @default.
- W2298982800 hasConcept C121332964 @default.
- W2298982800 hasConcept C124066611 @default.
- W2298982800 hasConcept C153180895 @default.
- W2298982800 hasConcept C154945302 @default.
- W2298982800 hasConcept C163716315 @default.
- W2298982800 hasConcept C202444582 @default.
- W2298982800 hasConcept C2777212361 @default.
- W2298982800 hasConcept C2988886741 @default.
- W2298982800 hasConcept C31510193 @default.
- W2298982800 hasConcept C33923547 @default.
- W2298982800 hasConcept C41008148 @default.
- W2298982800 hasConcept C45374587 @default.
- W2298982800 hasConcept C56372850 @default.
- W2298982800 hasConcept C62520636 @default.
- W2298982800 hasConcept C9652623 @default.
- W2298982800 hasConceptScore W2298982800C11413529 @default.
- W2298982800 hasConceptScore W2298982800C121332964 @default.
- W2298982800 hasConceptScore W2298982800C124066611 @default.
- W2298982800 hasConceptScore W2298982800C153180895 @default.
- W2298982800 hasConceptScore W2298982800C154945302 @default.
- W2298982800 hasConceptScore W2298982800C163716315 @default.
- W2298982800 hasConceptScore W2298982800C202444582 @default.
- W2298982800 hasConceptScore W2298982800C2777212361 @default.
- W2298982800 hasConceptScore W2298982800C2988886741 @default.
- W2298982800 hasConceptScore W2298982800C31510193 @default.
- W2298982800 hasConceptScore W2298982800C33923547 @default.
- W2298982800 hasConceptScore W2298982800C41008148 @default.
- W2298982800 hasConceptScore W2298982800C45374587 @default.
- W2298982800 hasConceptScore W2298982800C56372850 @default.
- W2298982800 hasConceptScore W2298982800C62520636 @default.
- W2298982800 hasConceptScore W2298982800C9652623 @default.
- W2298982800 hasFunder F4320321001 @default.
- W2298982800 hasLocation W22989828001 @default.
- W2298982800 hasOpenAccess W2298982800 @default.