Matches in SemOpenAlex for { <https://semopenalex.org/work/W2299565249> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2299565249 endingPage "231" @default.
- W2299565249 startingPage "221" @default.
- W2299565249 abstract "Characteristic classification of mass plays a role of vital importance in diagnosis of breast cancer. The existing computer aided diagnosis (CAD) methods used to benefit a lot from low-level or middle-level features which are not that good at the simulation of real diagnostic processes, adding difficulties in improving the classification performance. In this paper, we design a deep feature based framework for breast mass classification task. It mainly contains a convolutional neural network (CNN) and a decision mechanism. Combining intensity information and deep features automatically extracted by the trained CNN from the original image, our proposed method could better simulate the diagnostic procedure operated by doctors and achieved state-of-art performance. In this framework, doctors' global and local impressions left by mass images were represented by deep features extracted from two different layers called high-level and middle-level features. Meanwhile, the original images were regarded as detailed descriptions of the breast mass. Then, classifiers based on features above were used in combination to predict classes of test images. And outcomes of classifiers based on different features were analyzed jointly to determine the types of test images. With the help of two kinds of feature visualization methods, deep features extracted from different layers illustrate effective in classification performance and diagnosis simulation. In addition, our method was applied to DDSM dataset and achieved high accuracy under two objective evaluation measures." @default.
- W2299565249 created "2016-06-24" @default.
- W2299565249 creator A5014751537 @default.
- W2299565249 creator A5028530320 @default.
- W2299565249 creator A5052716839 @default.
- W2299565249 creator A5056569344 @default.
- W2299565249 date "2016-07-01" @default.
- W2299565249 modified "2023-10-16" @default.
- W2299565249 title "A deep feature based framework for breast masses classification" @default.
- W2299565249 cites W114517082 @default.
- W2299565249 cites W1496147749 @default.
- W2299565249 cites W1963882359 @default.
- W2299565249 cites W1979577627 @default.
- W2299565249 cites W2000054543 @default.
- W2299565249 cites W2000646906 @default.
- W2299565249 cites W2001297728 @default.
- W2299565249 cites W2015861736 @default.
- W2299565249 cites W2022508996 @default.
- W2299565249 cites W2029607340 @default.
- W2299565249 cites W2043103956 @default.
- W2299565249 cites W2045234411 @default.
- W2299565249 cites W2061345601 @default.
- W2299565249 cites W2066941820 @default.
- W2299565249 cites W2070644180 @default.
- W2299565249 cites W2078358607 @default.
- W2299565249 cites W2082526668 @default.
- W2299565249 cites W2086127902 @default.
- W2299565249 cites W2100495367 @default.
- W2299565249 cites W2101926813 @default.
- W2299565249 cites W2102605133 @default.
- W2299565249 cites W2103754534 @default.
- W2299565249 cites W2104775919 @default.
- W2299565249 cites W2105967432 @default.
- W2299565249 cites W2112796928 @default.
- W2299565249 cites W2116360511 @default.
- W2299565249 cites W2121289914 @default.
- W2299565249 cites W2122999192 @default.
- W2299565249 cites W2129981175 @default.
- W2299565249 cites W2133533561 @default.
- W2299565249 cites W2141619730 @default.
- W2299565249 cites W2144647583 @default.
- W2299565249 cites W2145339207 @default.
- W2299565249 cites W2153635508 @default.
- W2299565249 cites W2154404668 @default.
- W2299565249 cites W2166206801 @default.
- W2299565249 cites W2172191903 @default.
- W2299565249 cites W2293078015 @default.
- W2299565249 cites W2919115771 @default.
- W2299565249 cites W4239072543 @default.
- W2299565249 cites W64027530 @default.
- W2299565249 doi "https://doi.org/10.1016/j.neucom.2016.02.060" @default.
- W2299565249 hasPublicationYear "2016" @default.
- W2299565249 type Work @default.
- W2299565249 sameAs 2299565249 @default.
- W2299565249 citedByCount "234" @default.
- W2299565249 countsByYear W22995652492016 @default.
- W2299565249 countsByYear W22995652492017 @default.
- W2299565249 countsByYear W22995652492018 @default.
- W2299565249 countsByYear W22995652492019 @default.
- W2299565249 countsByYear W22995652492020 @default.
- W2299565249 countsByYear W22995652492021 @default.
- W2299565249 countsByYear W22995652492022 @default.
- W2299565249 countsByYear W22995652492023 @default.
- W2299565249 crossrefType "journal-article" @default.
- W2299565249 hasAuthorship W2299565249A5014751537 @default.
- W2299565249 hasAuthorship W2299565249A5028530320 @default.
- W2299565249 hasAuthorship W2299565249A5052716839 @default.
- W2299565249 hasAuthorship W2299565249A5056569344 @default.
- W2299565249 hasConcept C138885662 @default.
- W2299565249 hasConcept C153180895 @default.
- W2299565249 hasConcept C154945302 @default.
- W2299565249 hasConcept C2776401178 @default.
- W2299565249 hasConcept C41008148 @default.
- W2299565249 hasConcept C41895202 @default.
- W2299565249 hasConceptScore W2299565249C138885662 @default.
- W2299565249 hasConceptScore W2299565249C153180895 @default.
- W2299565249 hasConceptScore W2299565249C154945302 @default.
- W2299565249 hasConceptScore W2299565249C2776401178 @default.
- W2299565249 hasConceptScore W2299565249C41008148 @default.
- W2299565249 hasConceptScore W2299565249C41895202 @default.
- W2299565249 hasLocation W22995652491 @default.
- W2299565249 hasOpenAccess W2299565249 @default.
- W2299565249 hasPrimaryLocation W22995652491 @default.
- W2299565249 hasRelatedWork W2016461833 @default.
- W2299565249 hasRelatedWork W2052253960 @default.
- W2299565249 hasRelatedWork W2095834362 @default.
- W2299565249 hasRelatedWork W2147802381 @default.
- W2299565249 hasRelatedWork W2382607599 @default.
- W2299565249 hasRelatedWork W2489255581 @default.
- W2299565249 hasRelatedWork W2760085659 @default.
- W2299565249 hasRelatedWork W2970216048 @default.
- W2299565249 hasRelatedWork W3197541072 @default.
- W2299565249 hasRelatedWork W376702462 @default.
- W2299565249 hasVolume "197" @default.
- W2299565249 isParatext "false" @default.
- W2299565249 isRetracted "false" @default.
- W2299565249 magId "2299565249" @default.
- W2299565249 workType "article" @default.