Matches in SemOpenAlex for { <https://semopenalex.org/work/W2299691622> ?p ?o ?g. }
- W2299691622 endingPage "907" @default.
- W2299691622 startingPage "894" @default.
- W2299691622 abstract "Purpose: This paper provides a comparison between a fast, commercial, in‐patient Monte Carlo dose calculation algorithm (GPUMCD) and geant4 . It also evaluates the dosimetric impact of the application of an external 1.5 T magnetic field. Methods: A stand‐alone version of the Elekta™ GPUMCD algorithm, to be used within the Monaco treatment planning system to model dose for the Elekta™ magnetic resonance imaging (MRI) Linac, was compared against geant4 (v10.1). This was done in the presence or absence of a 1.5 T static magnetic field directed orthogonally to the radiation beam axis. Phantoms with material compositions of water, ICRU lung, ICRU compact‐bone, and titanium were used for this purpose. Beams with 2 MeV monoenergetic photons as well as a 7 MV histogrammed spectrum representing the MRI Linac spectrum were emitted from a point source using a nominal source‐to‐surface distance of 142.5 cm. Field sizes ranged from 1.5 × 1.5 to 10 × 10 cm 2 . Dose scoring was performed using a 3D grid comprising 1 mm 3 voxels. The production thresholds were equivalent for both codes. Results were analyzed based upon a voxel by voxel dose difference between the two codes and also using a volumetric gamma analysis. Results: Comparisons were drawn from central axis depth doses, cross beam profiles, and isodose contours. Both in the presence and absence of a 1.5 T static magnetic field the relative differences in doses scored along the beam central axis were less than 1% for the homogeneous water phantom and all results matched within a maximum of ±2% for heterogeneous phantoms. Volumetric gamma analysis indicated that more than 99% of the examined volume passed gamma criteria of 2%—2 mm (dose difference and distance to agreement, respectively). These criteria were chosen because the minimum primary statistical uncertainty in dose scoring voxels was 0.5%. The presence of the magnetic field affects the dose at the interface depending upon the density of the material on either sides of the interface. This effect varies with the field size. For example, at the water‐lung interface a 33.94% increase in dose was observed (relative to the D max ), by both GPUMCD and geant4 for the field size of 2 × 2 cm 2 (compared to no B‐field case), which increased to 47.83% for the field size of 5 × 5 cm 2 in the presence of the magnetic field. Similarly, at the lung‐water interface, the dose decreased by 19.21% (relative to D max ) for a field size of 2 × 2 cm 2 and by 30.01% for 5 × 5 cm 2 field size. For more complex combinations of materials the dose deposition also becomes more complex. Conclusions: The GPUMCD algorithm showed good agreement against geant4 both in the presence and absence of a 1.5 T external magnetic field. The application of 1.5 T magnetic field significantly alters the dose at the interfaces by either increasing or decreasing the dose depending upon the density of the material on either side of the interfaces." @default.
- W2299691622 created "2016-06-24" @default.
- W2299691622 creator A5014374296 @default.
- W2299691622 creator A5015138770 @default.
- W2299691622 creator A5025428419 @default.
- W2299691622 creator A5038509538 @default.
- W2299691622 creator A5047457399 @default.
- W2299691622 creator A5054639148 @default.
- W2299691622 creator A5062790621 @default.
- W2299691622 date "2016-01-22" @default.
- W2299691622 modified "2023-10-17" @default.
- W2299691622 title "Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with <scp>geant</scp> 4" @default.
- W2299691622 cites W1989922570 @default.
- W2299691622 cites W1991393867 @default.
- W2299691622 cites W1991651481 @default.
- W2299691622 cites W1999194933 @default.
- W2299691622 cites W2003750379 @default.
- W2299691622 cites W2004615142 @default.
- W2299691622 cites W2006578626 @default.
- W2299691622 cites W2040357326 @default.
- W2299691622 cites W2043618285 @default.
- W2299691622 cites W2063023042 @default.
- W2299691622 cites W2095392893 @default.
- W2299691622 cites W2110893320 @default.
- W2299691622 cites W2183838008 @default.
- W2299691622 cites W3104118572 @default.
- W2299691622 cites W591914134 @default.
- W2299691622 doi "https://doi.org/10.1118/1.4939808" @default.
- W2299691622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26843250" @default.
- W2299691622 hasPublicationYear "2016" @default.
- W2299691622 type Work @default.
- W2299691622 sameAs 2299691622 @default.
- W2299691622 citedByCount "77" @default.
- W2299691622 countsByYear W22996916222016 @default.
- W2299691622 countsByYear W22996916222017 @default.
- W2299691622 countsByYear W22996916222018 @default.
- W2299691622 countsByYear W22996916222019 @default.
- W2299691622 countsByYear W22996916222020 @default.
- W2299691622 countsByYear W22996916222021 @default.
- W2299691622 countsByYear W22996916222022 @default.
- W2299691622 countsByYear W22996916222023 @default.
- W2299691622 crossrefType "journal-article" @default.
- W2299691622 hasAuthorship W2299691622A5014374296 @default.
- W2299691622 hasAuthorship W2299691622A5015138770 @default.
- W2299691622 hasAuthorship W2299691622A5025428419 @default.
- W2299691622 hasAuthorship W2299691622A5038509538 @default.
- W2299691622 hasAuthorship W2299691622A5047457399 @default.
- W2299691622 hasAuthorship W2299691622A5054639148 @default.
- W2299691622 hasAuthorship W2299691622A5062790621 @default.
- W2299691622 hasConcept C104293457 @default.
- W2299691622 hasConcept C105795698 @default.
- W2299691622 hasConcept C120665830 @default.
- W2299691622 hasConcept C121332964 @default.
- W2299691622 hasConcept C126838900 @default.
- W2299691622 hasConcept C159317903 @default.
- W2299691622 hasConcept C168834538 @default.
- W2299691622 hasConcept C180048950 @default.
- W2299691622 hasConcept C19499675 @default.
- W2299691622 hasConcept C2989005 @default.
- W2299691622 hasConcept C30475298 @default.
- W2299691622 hasConcept C33923547 @default.
- W2299691622 hasConcept C54170458 @default.
- W2299691622 hasConcept C71924100 @default.
- W2299691622 hasConcept C75088862 @default.
- W2299691622 hasConceptScore W2299691622C104293457 @default.
- W2299691622 hasConceptScore W2299691622C105795698 @default.
- W2299691622 hasConceptScore W2299691622C120665830 @default.
- W2299691622 hasConceptScore W2299691622C121332964 @default.
- W2299691622 hasConceptScore W2299691622C126838900 @default.
- W2299691622 hasConceptScore W2299691622C159317903 @default.
- W2299691622 hasConceptScore W2299691622C168834538 @default.
- W2299691622 hasConceptScore W2299691622C180048950 @default.
- W2299691622 hasConceptScore W2299691622C19499675 @default.
- W2299691622 hasConceptScore W2299691622C2989005 @default.
- W2299691622 hasConceptScore W2299691622C30475298 @default.
- W2299691622 hasConceptScore W2299691622C33923547 @default.
- W2299691622 hasConceptScore W2299691622C54170458 @default.
- W2299691622 hasConceptScore W2299691622C71924100 @default.
- W2299691622 hasConceptScore W2299691622C75088862 @default.
- W2299691622 hasFunder F4320321396 @default.
- W2299691622 hasIssue "2" @default.
- W2299691622 hasLocation W22996916221 @default.
- W2299691622 hasLocation W22996916222 @default.
- W2299691622 hasOpenAccess W2299691622 @default.
- W2299691622 hasPrimaryLocation W22996916221 @default.
- W2299691622 hasRelatedWork W1998563493 @default.
- W2299691622 hasRelatedWork W2016533837 @default.
- W2299691622 hasRelatedWork W2115968180 @default.
- W2299691622 hasRelatedWork W2417440389 @default.
- W2299691622 hasRelatedWork W2892386716 @default.
- W2299691622 hasRelatedWork W29630554 @default.
- W2299691622 hasRelatedWork W3027020613 @default.
- W2299691622 hasRelatedWork W3167885074 @default.
- W2299691622 hasRelatedWork W4306164210 @default.
- W2299691622 hasRelatedWork W4313316311 @default.
- W2299691622 hasVolume "43" @default.
- W2299691622 isParatext "false" @default.
- W2299691622 isRetracted "false" @default.