Matches in SemOpenAlex for { <https://semopenalex.org/work/W2300316488> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2300316488 abstract "Question answering (QA) has a long tradition, involving many disciplines, ranging from philosophy to database theory. Depending on the discipline different aspects of the question answering process are investigated.In this thesis, an Arabic Information Retrieval (IR) System has been implemented, we know that searching inside a large corpus is a hard and time-consuming task for the user, so that, establishing a way to retrieve the data to the user is very effective. The main concern is about the Prophetic Hadith. We have assumed that the corpus is divided into main topics and each one is divided into sub-topics and so on. In another hand, this thesis presented the application of pattern recognition algorithm based on statistical learning, the Hidden Markov Model (HMM) which builds one model for each topic related trained texts and before training there is a processing step in any IR system which is stemming, which removes morphological information from the word. Stemming has a long tradition in document retrieval, and a variety of stemmers are available. The Arabic language is a highly inflected language and it has a complex morphology.After stemming, and for training purpose a feature vector for each word in the corpus is generated. A new approach has been implemented, which creates the feature vector for the words from its frequency inside the topics, then labels are generated for the words by clustering them into groups and one label is given for all words in one cluster, the clustering process is used k-means algorithm witch classify or group our stems based on attribute/feature.Although we used a Prophetic Hadith corpus, the system could be used in any other context, anyhow several experiments have been carried out in this research in order to increase the performance of our system and the highest possible accuracy accomplished in 64%." @default.
- W2300316488 created "2016-06-24" @default.
- W2300316488 creator A5083818302 @default.
- W2300316488 date "2009-01-01" @default.
- W2300316488 modified "2023-09-23" @default.
- W2300316488 title "Automatic Question Answering System for Arabic Language Textual Data" @default.
- W2300316488 hasPublicationYear "2009" @default.
- W2300316488 type Work @default.
- W2300316488 sameAs 2300316488 @default.
- W2300316488 citedByCount "0" @default.
- W2300316488 crossrefType "journal-article" @default.
- W2300316488 hasAuthorship W2300316488A5083818302 @default.
- W2300316488 hasConcept C111919701 @default.
- W2300316488 hasConcept C136197465 @default.
- W2300316488 hasConcept C138885662 @default.
- W2300316488 hasConcept C154945302 @default.
- W2300316488 hasConcept C204321447 @default.
- W2300316488 hasConcept C23123220 @default.
- W2300316488 hasConcept C2776401178 @default.
- W2300316488 hasConcept C41008148 @default.
- W2300316488 hasConcept C41895202 @default.
- W2300316488 hasConcept C44291984 @default.
- W2300316488 hasConcept C73555534 @default.
- W2300316488 hasConcept C90805587 @default.
- W2300316488 hasConcept C98045186 @default.
- W2300316488 hasConceptScore W2300316488C111919701 @default.
- W2300316488 hasConceptScore W2300316488C136197465 @default.
- W2300316488 hasConceptScore W2300316488C138885662 @default.
- W2300316488 hasConceptScore W2300316488C154945302 @default.
- W2300316488 hasConceptScore W2300316488C204321447 @default.
- W2300316488 hasConceptScore W2300316488C23123220 @default.
- W2300316488 hasConceptScore W2300316488C2776401178 @default.
- W2300316488 hasConceptScore W2300316488C41008148 @default.
- W2300316488 hasConceptScore W2300316488C41895202 @default.
- W2300316488 hasConceptScore W2300316488C44291984 @default.
- W2300316488 hasConceptScore W2300316488C73555534 @default.
- W2300316488 hasConceptScore W2300316488C90805587 @default.
- W2300316488 hasConceptScore W2300316488C98045186 @default.
- W2300316488 hasLocation W23003164881 @default.
- W2300316488 hasOpenAccess W2300316488 @default.
- W2300316488 hasPrimaryLocation W23003164881 @default.
- W2300316488 hasRelatedWork W1783519389 @default.
- W2300316488 hasRelatedWork W1821579912 @default.
- W2300316488 hasRelatedWork W2275273624 @default.
- W2300316488 hasRelatedWork W2278265008 @default.
- W2300316488 hasRelatedWork W2403830435 @default.
- W2300316488 hasRelatedWork W2417911821 @default.
- W2300316488 hasRelatedWork W2467309248 @default.
- W2300316488 hasRelatedWork W2552460114 @default.
- W2300316488 hasRelatedWork W2587980974 @default.
- W2300316488 hasRelatedWork W2758582739 @default.
- W2300316488 hasRelatedWork W2774270047 @default.
- W2300316488 hasRelatedWork W2800528265 @default.
- W2300316488 hasRelatedWork W2902431458 @default.
- W2300316488 hasRelatedWork W2913282339 @default.
- W2300316488 hasRelatedWork W2921750884 @default.
- W2300316488 hasRelatedWork W2973017033 @default.
- W2300316488 hasRelatedWork W2979549151 @default.
- W2300316488 hasRelatedWork W3130398963 @default.
- W2300316488 hasRelatedWork W3139248538 @default.
- W2300316488 hasRelatedWork W2559939501 @default.
- W2300316488 isParatext "false" @default.
- W2300316488 isRetracted "false" @default.
- W2300316488 magId "2300316488" @default.
- W2300316488 workType "article" @default.