Matches in SemOpenAlex for { <https://semopenalex.org/work/W2300670215> ?p ?o ?g. }
- W2300670215 abstract "The mass culture of microalgae for the commercial production of a) low value commodities such as biofuel and food and b) high value products such as polyunsaturated fatty acids, carotenoids, and nano-scaffolds is becoming increasingly attractive. Coccolithophorid algae have been investigated as potential candidates for both low and high value products. This thesis provides data on the specific nutrient and growth requirements in the coccolithophorid, Chrysotila carterae (previously Pleurochrysis carterae). Via the use of oxygen evolution techniques and PAM fluorometry, it is shown that C. carterae is just as susceptible to photoinhibition as some other microalgae with photoinhibition occurring at around 1100-1500 μmol photon m2 s-1. C. carterae also has the ability to recover from short periods of acidification, with recovery from pH 5 when there was no organic carbon assimilation to pH 9 after 20 minutes, Carbon assimilation increased from almost 0, to 3.01 pg CORG cell-1 h-1 . This microalga has a fundamental requirement for selenium, with specific growth rates falling from a μmax of 0.6 d-1, with selenium to 0.1 d-1 in selenium-limited culture. Selenium is also required for coccolith production. In Se-limited culture coccolith production was almost reduced by half, from 70 x105 coccoliths mL-1 to 3.8 x 105 coccoliths mL-1. Diurnal studies of organic and inorganic carbon assimilation showed that C. carterae CCMP647 synthesises coccoliths during the day, and then extrudes them onto the cell surface during the last hours of the dark cycle. Investigations into the effect of various nitrogen sources indicated that with unregulated pH, nitrate achieved the greatest cell density and stable growth: The maximum cell densities reached were nitrate (66.61 x 104 ± 8.2 x 103 cells mL-1) > urea (34.0 x 104 ± 6.2 x 103 cells mL-1) = ammonium (36.08 x 104 ± 4.2 x 103 cells mL-1). Nitrate had the greatest effect on the culture medium ΔpH, (NO3- (0.134 ± 0.003) > urea (0.111 ± 0.003) > NH4+ (0.043 ± 0.001) and urea increased the growth rate of C. carterae by 150 % from 0.17 0.002 d-1 on NO3- to 0.44 ± 0.001 d-1 on urea. However, coccolith production increased with NO3- (73.81± 3.51 ng CaCO3 cell-1> NH4+ 55.18 ± 0.61 ng CaCO3 cell-1 > urea at 12.88 1.62 ng CaCO3 cell-1. Organic carbon (CORG) assimilation using NO3- far exceeded that on NH4+ and urea (CORG assimilated with NO3- = 7 x103 pg CORG cell-1 h-1 vs Urea at 6 x103 pg CORG cell-1 h-1 and NH4+ 5 x103 pg CORG cell-1 h-1 . Inorganic carbon assimilation (CINORG) was also elevated with NO3- producing 3 x103 pg CINORG cell-1 h-1 vs urea at 2 x103 pg CINORG cell-1 h-1 and NH4+ at 2 x103 pg CINORG cell-1 h-1. Thus, nitrate provides long term, stable growth with the highest cell overall cell density under unregulated pH. Under elevated medium pH, urea and ammonium had the highest rate of carbon assimilation far in excess of NO3- for both CORG (Urea 44921.73 ± 2191.08 pg CORG cell-1 h-1 > NH4+ 22006.22 ± 640.39 pg CORG cell-1 h-1 > NO3- 773.59 ± 14.8 pg CORG cell-1 h-1) and CINORG, Urea 773.59 ± 14.8 pg CINORG cell-1 h-1 NO3- 569.44 ± 31.4 pg CINORG cell-1 h-1. Although carbon assimilation rates were elevated under urea and NH4+ at higher pH levels, NO3- at pH 8 had the highest Calcifaction to photosynthsdis ratio (C:P) ratio of 0.158, while closely followed by urea at pH 9 (C:P = 0.150). With enhanced carbon assimilation at pH levels exceeding the pKa of CO2 in the medium pH indicated that this species must be using HCO3- as a carbon source, as cell growth and calcification were elevated at pH levels at which there is a greatly reduced level of CO2 in the medium which is typically in air equilibrated water approximately 10 μmol L-1." @default.
- W2300670215 created "2016-06-24" @default.
- W2300670215 creator A5015238956 @default.
- W2300670215 date "2015-01-01" @default.
- W2300670215 modified "2023-09-26" @default.
- W2300670215 title "Growth, calcification and photosynthesis in the coccolithophorid chrysotila carterae" @default.
- W2300670215 cites W1483773410 @default.
- W2300670215 cites W1491619236 @default.
- W2300670215 cites W1521574864 @default.
- W2300670215 cites W1536217714 @default.
- W2300670215 cites W1552913007 @default.
- W2300670215 cites W1572618883 @default.
- W2300670215 cites W1598777529 @default.
- W2300670215 cites W1620865342 @default.
- W2300670215 cites W1636092099 @default.
- W2300670215 cites W1641738254 @default.
- W2300670215 cites W174983584 @default.
- W2300670215 cites W1868482275 @default.
- W2300670215 cites W1909660917 @default.
- W2300670215 cites W1923175615 @default.
- W2300670215 cites W1963497642 @default.
- W2300670215 cites W1964339596 @default.
- W2300670215 cites W1964788788 @default.
- W2300670215 cites W1965447211 @default.
- W2300670215 cites W1968830275 @default.
- W2300670215 cites W1971189873 @default.
- W2300670215 cites W1971335726 @default.
- W2300670215 cites W1973871496 @default.
- W2300670215 cites W1974028648 @default.
- W2300670215 cites W1974966398 @default.
- W2300670215 cites W1975397470 @default.
- W2300670215 cites W1979645334 @default.
- W2300670215 cites W1980161005 @default.
- W2300670215 cites W1980439569 @default.
- W2300670215 cites W1982254235 @default.
- W2300670215 cites W1982658513 @default.
- W2300670215 cites W1983483261 @default.
- W2300670215 cites W1984100836 @default.
- W2300670215 cites W1986619898 @default.
- W2300670215 cites W1988719769 @default.
- W2300670215 cites W1988732258 @default.
- W2300670215 cites W1992092497 @default.
- W2300670215 cites W1993388536 @default.
- W2300670215 cites W1993737527 @default.
- W2300670215 cites W1995320100 @default.
- W2300670215 cites W1995332315 @default.
- W2300670215 cites W1998694284 @default.
- W2300670215 cites W1999013744 @default.
- W2300670215 cites W1999095734 @default.
- W2300670215 cites W1999704703 @default.
- W2300670215 cites W2000967764 @default.
- W2300670215 cites W2004393034 @default.
- W2300670215 cites W2004864130 @default.
- W2300670215 cites W2005321937 @default.
- W2300670215 cites W2006650215 @default.
- W2300670215 cites W2007168419 @default.
- W2300670215 cites W2008479948 @default.
- W2300670215 cites W2010226892 @default.
- W2300670215 cites W2011269750 @default.
- W2300670215 cites W2012515449 @default.
- W2300670215 cites W2013375826 @default.
- W2300670215 cites W2015568664 @default.
- W2300670215 cites W2015666391 @default.
- W2300670215 cites W2015742960 @default.
- W2300670215 cites W2017117940 @default.
- W2300670215 cites W2017762456 @default.
- W2300670215 cites W2018002670 @default.
- W2300670215 cites W2018109954 @default.
- W2300670215 cites W2020355649 @default.
- W2300670215 cites W2021361052 @default.
- W2300670215 cites W2022633352 @default.
- W2300670215 cites W2023196432 @default.
- W2300670215 cites W2025028179 @default.
- W2300670215 cites W2026312705 @default.
- W2300670215 cites W2026631099 @default.
- W2300670215 cites W2027746389 @default.
- W2300670215 cites W2027855983 @default.
- W2300670215 cites W2028619026 @default.
- W2300670215 cites W2029411361 @default.
- W2300670215 cites W2029874461 @default.
- W2300670215 cites W2030309544 @default.
- W2300670215 cites W2031637941 @default.
- W2300670215 cites W2031775344 @default.
- W2300670215 cites W2032576914 @default.
- W2300670215 cites W2033288617 @default.
- W2300670215 cites W2033455570 @default.
- W2300670215 cites W2037628692 @default.
- W2300670215 cites W2038694681 @default.
- W2300670215 cites W2038710080 @default.
- W2300670215 cites W2039097838 @default.
- W2300670215 cites W2039779660 @default.
- W2300670215 cites W2040260732 @default.
- W2300670215 cites W2041358136 @default.
- W2300670215 cites W2041645804 @default.
- W2300670215 cites W2042548037 @default.
- W2300670215 cites W2042902237 @default.
- W2300670215 cites W2044926074 @default.
- W2300670215 cites W2045893011 @default.
- W2300670215 cites W2046452125 @default.
- W2300670215 cites W2047617254 @default.