Matches in SemOpenAlex for { <https://semopenalex.org/work/W2300908449> ?p ?o ?g. }
- W2300908449 abstract "Extreme value theory has been used to develop models for describing the distribution of rare events. The extreme value theory based models can be used for asymptotically approximating the behavior of the tail(s) of the distribution function. An important challenge in the application of such extreme value models is the choice of a threshold, beyond which point the asymptotically justified extreme value models can provide good extrapolation. One approach for determining the threshold is to fit the all available data by an extreme value mixture model. This thesis will review most of the existing extreme value mixture models in the literature and implement them in a package for the statistical programming language R to make them more readily useable by practitioners as they are not commonly available in any software. There are many different forms of extreme value mixture models in the literature (e.g. parametric, semi-parametric and non-parametric), which provide an automated approach for estimating the threshold and taking into account the uncertainties with threshold selection. However, it is not clear that how the proportion above the threshold or tail fraction should be treated as there is no consistency in the existing model derivations. This thesis will develop some new models by adaptation of the existing ones in the literature and placing them all within a more generalized framework for taking into account how the tail fraction is defined in the model. Various new models are proposed by extending some of the existing parametric form mixture models to have continuous density at the threshold, which has the advantage of using less model parameters and being more physically plausible. The generalised framework all the mixture models are placed within can be used for demonstrating the importance of the specification of the tail fraction. An R package called evmix has been created to enable these mixture models to be more easily applied and further developed. For every mixture model, the density, distribution, quantile, random number generation, likelihood and fitting function are presented (Bayesian inference via MCMC is also implemented for the non-parametric extreme value mixture models). A simulation study investigates the performance of the various extreme value mixture models under different population distributions with a representative variety of lower and upper tail behaviors. The results show that the kernel density estimator based non-parametric form mixture model is able to provide good tail estimation in general, whilst the parametric and semi-parametric forms mixture models can give a reasonable fit if the distribution below the threshold is correctly specified. Somewhat surprisingly, it is found that including a constraint of continuity at the threshold does not substantially improve the model fit in the upper tail. The hybrid Pareto model performs poorly as it does not include the tail fraction term. The relevant mixture models are applied to insurance and financial applications which highlight the practical usefulness of these models. Acknowledgments I would like to thank my supervisors Dr Carl Scarrott and Associate Professor Marco Reale for their support and guidance throughout my study. I would like to thank all the members in the Department of Mathematics and Statistics at University of Canterbury. In particular, thanks to Steve Gourdie and Paul Brouwers for providing IT support. Another thank you goes to all the postgraduate students in the department, who have made my time as a student very enjoyable. Special thanks must go to James Dent for reading my draft thesis and to Chitraka Wickramarachchi for discussing statistics questions. Finally, I would like to thank my parents for their endless support and encouragement through my study." @default.
- W2300908449 created "2016-06-24" @default.
- W2300908449 creator A5085570783 @default.
- W2300908449 date "2013-01-01" @default.
- W2300908449 modified "2023-09-23" @default.
- W2300908449 title "Extreme Value Mixture Modelling with Simulation Study and Applications in Finance and Insurance" @default.
- W2300908449 cites W1498464051 @default.
- W2300908449 cites W1500657154 @default.
- W2300908449 cites W1561852129 @default.
- W2300908449 cites W1598299151 @default.
- W2300908449 cites W1879048345 @default.
- W2300908449 cites W1964449911 @default.
- W2300908449 cites W1978135292 @default.
- W2300908449 cites W1980620433 @default.
- W2300908449 cites W1985093013 @default.
- W2300908449 cites W1994210067 @default.
- W2300908449 cites W1998378660 @default.
- W2300908449 cites W2004184840 @default.
- W2300908449 cites W2005105486 @default.
- W2300908449 cites W2008103017 @default.
- W2300908449 cites W2014268383 @default.
- W2300908449 cites W2016010059 @default.
- W2300908449 cites W2022602914 @default.
- W2300908449 cites W2025392487 @default.
- W2300908449 cites W2027932552 @default.
- W2300908449 cites W2042574171 @default.
- W2300908449 cites W2043549322 @default.
- W2300908449 cites W2046455752 @default.
- W2300908449 cites W2052218905 @default.
- W2300908449 cites W2061343954 @default.
- W2300908449 cites W2062520775 @default.
- W2300908449 cites W2071769383 @default.
- W2300908449 cites W2106706098 @default.
- W2300908449 cites W2109246257 @default.
- W2300908449 cites W2112160211 @default.
- W2300908449 cites W2116718775 @default.
- W2300908449 cites W2118020555 @default.
- W2300908449 cites W2129905273 @default.
- W2300908449 cites W2132149004 @default.
- W2300908449 cites W2135177937 @default.
- W2300908449 cites W2135344627 @default.
- W2300908449 cites W2139224138 @default.
- W2300908449 cites W2140327107 @default.
- W2300908449 cites W2150388527 @default.
- W2300908449 cites W2152552334 @default.
- W2300908449 cites W2159689047 @default.
- W2300908449 cites W2172067032 @default.
- W2300908449 cites W2172282971 @default.
- W2300908449 cites W2275274991 @default.
- W2300908449 cites W2481824080 @default.
- W2300908449 cites W2573031522 @default.
- W2300908449 cites W28026382 @default.
- W2300908449 cites W46851279 @default.
- W2300908449 cites W58740540 @default.
- W2300908449 cites W618003428 @default.
- W2300908449 cites W2337490104 @default.
- W2300908449 doi "https://doi.org/10.26021/7245" @default.
- W2300908449 hasPublicationYear "2013" @default.
- W2300908449 type Work @default.
- W2300908449 sameAs 2300908449 @default.
- W2300908449 citedByCount "3" @default.
- W2300908449 countsByYear W23009084492014 @default.
- W2300908449 countsByYear W23009084492016 @default.
- W2300908449 countsByYear W23009084492022 @default.
- W2300908449 crossrefType "journal-article" @default.
- W2300908449 hasAuthorship W2300908449A5085570783 @default.
- W2300908449 hasConcept C105795698 @default.
- W2300908449 hasConcept C117251300 @default.
- W2300908449 hasConcept C126255220 @default.
- W2300908449 hasConcept C132459708 @default.
- W2300908449 hasConcept C147581598 @default.
- W2300908449 hasConcept C149782125 @default.
- W2300908449 hasConcept C154945302 @default.
- W2300908449 hasConcept C169707849 @default.
- W2300908449 hasConcept C24574437 @default.
- W2300908449 hasConcept C2776291640 @default.
- W2300908449 hasConcept C2776436953 @default.
- W2300908449 hasConcept C33923547 @default.
- W2300908449 hasConcept C41008148 @default.
- W2300908449 hasConceptScore W2300908449C105795698 @default.
- W2300908449 hasConceptScore W2300908449C117251300 @default.
- W2300908449 hasConceptScore W2300908449C126255220 @default.
- W2300908449 hasConceptScore W2300908449C132459708 @default.
- W2300908449 hasConceptScore W2300908449C147581598 @default.
- W2300908449 hasConceptScore W2300908449C149782125 @default.
- W2300908449 hasConceptScore W2300908449C154945302 @default.
- W2300908449 hasConceptScore W2300908449C169707849 @default.
- W2300908449 hasConceptScore W2300908449C24574437 @default.
- W2300908449 hasConceptScore W2300908449C2776291640 @default.
- W2300908449 hasConceptScore W2300908449C2776436953 @default.
- W2300908449 hasConceptScore W2300908449C33923547 @default.
- W2300908449 hasConceptScore W2300908449C41008148 @default.
- W2300908449 hasLocation W23009084491 @default.
- W2300908449 hasOpenAccess W2300908449 @default.
- W2300908449 hasPrimaryLocation W23009084491 @default.
- W2300908449 hasRelatedWork W1501337568 @default.
- W2300908449 hasRelatedWork W1564037532 @default.
- W2300908449 hasRelatedWork W2780073372 @default.
- W2300908449 hasRelatedWork W2941068311 @default.
- W2300908449 hasRelatedWork W3210562717 @default.