Matches in SemOpenAlex for { <https://semopenalex.org/work/W2301618757> ?p ?o ?g. }
- W2301618757 endingPage "1745" @default.
- W2301618757 startingPage "1735" @default.
- W2301618757 abstract "Stochastic versions of Gompertz, Ricker, and various other dynamics models play a fundamental role in quantifying strength of density dependence and studying long-term dynamics of wildlife populations. These models are frequently estimated using time series of abundance estimates that are inevitably subject to observation error and missing data. This issue can be addressed with a state-space modeling framework that jointly estimates the observed data model and the underlying stochastic population dynamics (SPD) model. In cases where abundance data are from multiple locations with a smaller spatial resolution (e.g., from mark-recapture and distance sampling studies), models are conventionally fitted to spatially pooled estimates of yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly estimated from short time series of spatially referenced distance sampling data in a unified hierarchical state-space modeling framework that also allows for spatial variance (covariance) in population growth. We also show that a full range of likelihood based inference, including estimability diagnostics and model selection, is feasible in this class of models using a data cloning algorithm. We further show through simulation experiments that the hierarchical state-space framework introduced herein efficiently captures the underlying dynamical parameters and spatial abundance distribution. We apply our methodology by analyzing a time series of line-transect distance sampling data for fin whales (Balaenoptera physalus) off the U.S. west coast. Although there were only seven surveys conducted during the study time frame, 1991-2014, our analysis detected presence of strong density regulation and provided reliable estimates of fin whale densities. In summary, we show that the integrative framework developed herein allows ecologists to better infer key population characteristics such as presence of density regulation and spatial variability in a population's intrinsic growth potential." @default.
- W2301618757 created "2016-06-24" @default.
- W2301618757 creator A5042973046 @default.
- W2301618757 creator A5044150049 @default.
- W2301618757 creator A5058092350 @default.
- W2301618757 creator A5058194030 @default.
- W2301618757 date "2016-07-01" @default.
- W2301618757 modified "2023-09-24" @default.
- W2301618757 title "Integrating population dynamics models and distance sampling data: a spatial hierarchical state-space approach" @default.
- W2301618757 cites W1841330490 @default.
- W2301618757 cites W1983096829 @default.
- W2301618757 cites W1991799868 @default.
- W2301618757 cites W2013385108 @default.
- W2301618757 cites W2034427376 @default.
- W2301618757 cites W2039146308 @default.
- W2301618757 cites W2045709744 @default.
- W2301618757 cites W2046754626 @default.
- W2301618757 cites W2047831247 @default.
- W2301618757 cites W2057030083 @default.
- W2301618757 cites W2062956222 @default.
- W2301618757 cites W2079917449 @default.
- W2301618757 cites W2085047756 @default.
- W2301618757 cites W2092124742 @default.
- W2301618757 cites W2094149599 @default.
- W2301618757 cites W2098006724 @default.
- W2301618757 cites W2099288755 @default.
- W2301618757 cites W2100891518 @default.
- W2301618757 cites W2101345352 @default.
- W2301618757 cites W2101997321 @default.
- W2301618757 cites W2103785662 @default.
- W2301618757 cites W2105065325 @default.
- W2301618757 cites W2106461708 @default.
- W2301618757 cites W2106964024 @default.
- W2301618757 cites W2107858042 @default.
- W2301618757 cites W2111418884 @default.
- W2301618757 cites W2112433083 @default.
- W2301618757 cites W2114084375 @default.
- W2301618757 cites W2121091424 @default.
- W2301618757 cites W2122200228 @default.
- W2301618757 cites W2124753386 @default.
- W2301618757 cites W2129714439 @default.
- W2301618757 cites W2139075744 @default.
- W2301618757 cites W2150466677 @default.
- W2301618757 cites W2155115177 @default.
- W2301618757 cites W2157289208 @default.
- W2301618757 cites W2157548340 @default.
- W2301618757 cites W2158196600 @default.
- W2301618757 cites W2162335786 @default.
- W2301618757 cites W2167726825 @default.
- W2301618757 cites W2169396575 @default.
- W2301618757 cites W2313673965 @default.
- W2301618757 cites W2315347606 @default.
- W2301618757 cites W2317851360 @default.
- W2301618757 cites W2485286041 @default.
- W2301618757 cites W3103934441 @default.
- W2301618757 doi "https://doi.org/10.1890/15-1406.1" @default.
- W2301618757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27859153" @default.
- W2301618757 hasPublicationYear "2016" @default.
- W2301618757 type Work @default.
- W2301618757 sameAs 2301618757 @default.
- W2301618757 citedByCount "17" @default.
- W2301618757 countsByYear W23016187572017 @default.
- W2301618757 countsByYear W23016187572018 @default.
- W2301618757 countsByYear W23016187572020 @default.
- W2301618757 countsByYear W23016187572021 @default.
- W2301618757 countsByYear W23016187572022 @default.
- W2301618757 crossrefType "journal-article" @default.
- W2301618757 hasAuthorship W2301618757A5042973046 @default.
- W2301618757 hasAuthorship W2301618757A5044150049 @default.
- W2301618757 hasAuthorship W2301618757A5058092350 @default.
- W2301618757 hasAuthorship W2301618757A5058194030 @default.
- W2301618757 hasConcept C105795698 @default.
- W2301618757 hasConcept C106131492 @default.
- W2301618757 hasConcept C140779682 @default.
- W2301618757 hasConcept C144024400 @default.
- W2301618757 hasConcept C149923435 @default.
- W2301618757 hasConcept C154945302 @default.
- W2301618757 hasConcept C159985019 @default.
- W2301618757 hasConcept C18903297 @default.
- W2301618757 hasConcept C192562407 @default.
- W2301618757 hasConcept C204323151 @default.
- W2301618757 hasConcept C2776214188 @default.
- W2301618757 hasConcept C2778514742 @default.
- W2301618757 hasConcept C2781050692 @default.
- W2301618757 hasConcept C2908647359 @default.
- W2301618757 hasConcept C31972630 @default.
- W2301618757 hasConcept C33923547 @default.
- W2301618757 hasConcept C41008148 @default.
- W2301618757 hasConcept C52079815 @default.
- W2301618757 hasConcept C77077793 @default.
- W2301618757 hasConcept C86803240 @default.
- W2301618757 hasConceptScore W2301618757C105795698 @default.
- W2301618757 hasConceptScore W2301618757C106131492 @default.
- W2301618757 hasConceptScore W2301618757C140779682 @default.
- W2301618757 hasConceptScore W2301618757C144024400 @default.
- W2301618757 hasConceptScore W2301618757C149923435 @default.
- W2301618757 hasConceptScore W2301618757C154945302 @default.
- W2301618757 hasConceptScore W2301618757C159985019 @default.