Matches in SemOpenAlex for { <https://semopenalex.org/work/W2302012322> ?p ?o ?g. }
- W2302012322 endingPage "23" @default.
- W2302012322 startingPage "8" @default.
- W2302012322 abstract "Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for maps that explicitly expressed geomorphically implausible relationships indicating that the predictive performance of a model might be misleading in the case a predictor systematically relates to a spatially consistent bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying model revealed a high predictive capability and was generated with an accurate landslide inventory and predictors that did not directly describe a bias. However, none of the presented models was found to be completely unbiased. This study showed that high predictive performances cannot be equated with a high plausibility and applicability of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying confounding factors and biases in landslide inventories. A joint discussion between modelers and decision makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and applicability." @default.
- W2302012322 created "2016-06-24" @default.
- W2302012322 creator A5011606802 @default.
- W2302012322 creator A5019118021 @default.
- W2302012322 creator A5053356806 @default.
- W2302012322 creator A5078247848 @default.
- W2302012322 creator A5091679587 @default.
- W2302012322 date "2016-06-01" @default.
- W2302012322 modified "2023-10-16" @default.
- W2302012322 title "Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps" @default.
- W2302012322 cites W1180376999 @default.
- W2302012322 cites W1528099559 @default.
- W2302012322 cites W1570494172 @default.
- W2302012322 cites W1973249074 @default.
- W2302012322 cites W1978108654 @default.
- W2302012322 cites W1988650824 @default.
- W2302012322 cites W1989158271 @default.
- W2302012322 cites W1993753658 @default.
- W2302012322 cites W1994214164 @default.
- W2302012322 cites W1994454004 @default.
- W2302012322 cites W2001293281 @default.
- W2302012322 cites W2002626751 @default.
- W2302012322 cites W2003049509 @default.
- W2302012322 cites W2007471000 @default.
- W2302012322 cites W2007873570 @default.
- W2302012322 cites W2009610209 @default.
- W2302012322 cites W2010182650 @default.
- W2302012322 cites W2016708575 @default.
- W2302012322 cites W2017363733 @default.
- W2302012322 cites W2022724931 @default.
- W2302012322 cites W2023203753 @default.
- W2302012322 cites W2028230925 @default.
- W2302012322 cites W2036881582 @default.
- W2302012322 cites W2038170152 @default.
- W2302012322 cites W2040698615 @default.
- W2302012322 cites W2042951326 @default.
- W2302012322 cites W2053858205 @default.
- W2302012322 cites W2058082754 @default.
- W2302012322 cites W2063987149 @default.
- W2302012322 cites W2066685935 @default.
- W2302012322 cites W2080134555 @default.
- W2302012322 cites W2080996603 @default.
- W2302012322 cites W2082507487 @default.
- W2302012322 cites W2086063614 @default.
- W2302012322 cites W2089831210 @default.
- W2302012322 cites W2090091295 @default.
- W2302012322 cites W2105189544 @default.
- W2302012322 cites W2105714409 @default.
- W2302012322 cites W2106391126 @default.
- W2302012322 cites W2108156084 @default.
- W2302012322 cites W2114688767 @default.
- W2302012322 cites W2117350110 @default.
- W2302012322 cites W2122447387 @default.
- W2302012322 cites W2124217455 @default.
- W2302012322 cites W2134702142 @default.
- W2302012322 cites W2138681769 @default.
- W2302012322 cites W2142635246 @default.
- W2302012322 cites W2143097045 @default.
- W2302012322 cites W2143192068 @default.
- W2302012322 cites W2145126338 @default.
- W2302012322 cites W2147555471 @default.
- W2302012322 cites W2152273606 @default.
- W2302012322 cites W2157963336 @default.
- W2302012322 cites W2158901381 @default.
- W2302012322 cites W2159398439 @default.
- W2302012322 cites W2911964244 @default.
- W2302012322 doi "https://doi.org/10.1016/j.geomorph.2016.03.015" @default.
- W2302012322 hasPublicationYear "2016" @default.
- W2302012322 type Work @default.
- W2302012322 sameAs 2302012322 @default.
- W2302012322 citedByCount "98" @default.
- W2302012322 countsByYear W23020123222016 @default.
- W2302012322 countsByYear W23020123222017 @default.
- W2302012322 countsByYear W23020123222018 @default.
- W2302012322 countsByYear W23020123222019 @default.
- W2302012322 countsByYear W23020123222020 @default.
- W2302012322 countsByYear W23020123222021 @default.
- W2302012322 countsByYear W23020123222022 @default.
- W2302012322 countsByYear W23020123222023 @default.
- W2302012322 crossrefType "journal-article" @default.
- W2302012322 hasAuthorship W2302012322A5011606802 @default.
- W2302012322 hasAuthorship W2302012322A5019118021 @default.
- W2302012322 hasAuthorship W2302012322A5053356806 @default.
- W2302012322 hasAuthorship W2302012322A5078247848 @default.
- W2302012322 hasAuthorship W2302012322A5091679587 @default.
- W2302012322 hasConcept C105795698 @default.
- W2302012322 hasConcept C114793014 @default.
- W2302012322 hasConcept C119857082 @default.
- W2302012322 hasConcept C12267149 @default.
- W2302012322 hasConcept C124101348 @default.
- W2302012322 hasConcept C127313418 @default.
- W2302012322 hasConcept C151956035 @default.
- W2302012322 hasConcept C154945302 @default.
- W2302012322 hasConcept C169258074 @default.
- W2302012322 hasConcept C186295008 @default.
- W2302012322 hasConcept C205649164 @default.
- W2302012322 hasConcept C27181475 @default.
- W2302012322 hasConcept C33923547 @default.