Matches in SemOpenAlex for { <https://semopenalex.org/work/W230214929> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W230214929 endingPage "704" @default.
- W230214929 startingPage "693" @default.
- W230214929 abstract "Probabilistic rough sets define the lower and upper approximations and the corresponding three regions by using a pair of (α,β) thresholds. Many attempts have been made to determine or calculate effective (α,β) threshold values. A common principle in these approaches is to combine and utilize some intelligent technique with a repetitive process in order to optimize different properties of rough set based classification. In this article, we investigate an approach based on genetic algorithms that repeatedly modifies the thresholds while reducing the overall uncertainty of the rough set regions. A demonstrative example suggests that the proposed approach determines useful threshold values within a few iterations. It is also argued that the proposed approach provide similar results to that of some existing approaches such as the game-theoretic rough sets." @default.
- W230214929 created "2016-06-24" @default.
- W230214929 creator A5013885739 @default.
- W230214929 creator A5025865222 @default.
- W230214929 creator A5072550529 @default.
- W230214929 date "2014-01-01" @default.
- W230214929 modified "2023-09-23" @default.
- W230214929 title "Thresholds Determination for Probabilistic Rough Sets with Genetic Algorithms" @default.
- W230214929 cites W1606022329 @default.
- W230214929 cites W1659842140 @default.
- W230214929 cites W1701036113 @default.
- W230214929 cites W1704544815 @default.
- W230214929 cites W1808687169 @default.
- W230214929 cites W2022637272 @default.
- W230214929 cites W203615609 @default.
- W230214929 cites W2060945930 @default.
- W230214929 cites W2109116383 @default.
- W230214929 cites W2145020281 @default.
- W230214929 cites W2160694855 @default.
- W230214929 doi "https://doi.org/10.1007/978-3-319-11740-9_64" @default.
- W230214929 hasPublicationYear "2014" @default.
- W230214929 type Work @default.
- W230214929 sameAs 230214929 @default.
- W230214929 citedByCount "4" @default.
- W230214929 countsByYear W2302149292014 @default.
- W230214929 countsByYear W2302149292016 @default.
- W230214929 countsByYear W2302149292021 @default.
- W230214929 crossrefType "book-chapter" @default.
- W230214929 hasAuthorship W230214929A5013885739 @default.
- W230214929 hasAuthorship W230214929A5025865222 @default.
- W230214929 hasAuthorship W230214929A5072550529 @default.
- W230214929 hasConcept C111012933 @default.
- W230214929 hasConcept C11413529 @default.
- W230214929 hasConcept C154945302 @default.
- W230214929 hasConcept C24404364 @default.
- W230214929 hasConcept C41008148 @default.
- W230214929 hasConcept C49937458 @default.
- W230214929 hasConceptScore W230214929C111012933 @default.
- W230214929 hasConceptScore W230214929C11413529 @default.
- W230214929 hasConceptScore W230214929C154945302 @default.
- W230214929 hasConceptScore W230214929C24404364 @default.
- W230214929 hasConceptScore W230214929C41008148 @default.
- W230214929 hasConceptScore W230214929C49937458 @default.
- W230214929 hasLocation W2302149291 @default.
- W230214929 hasOpenAccess W230214929 @default.
- W230214929 hasPrimaryLocation W2302149291 @default.
- W230214929 hasRelatedWork W1531315564 @default.
- W230214929 hasRelatedWork W1970358763 @default.
- W230214929 hasRelatedWork W1975251650 @default.
- W230214929 hasRelatedWork W2078590855 @default.
- W230214929 hasRelatedWork W2151268798 @default.
- W230214929 hasRelatedWork W2212155158 @default.
- W230214929 hasRelatedWork W2365914540 @default.
- W230214929 hasRelatedWork W2548393475 @default.
- W230214929 hasRelatedWork W2969465628 @default.
- W230214929 hasRelatedWork W81608767 @default.
- W230214929 isParatext "false" @default.
- W230214929 isRetracted "false" @default.
- W230214929 magId "230214929" @default.
- W230214929 workType "book-chapter" @default.