Matches in SemOpenAlex for { <https://semopenalex.org/work/W2302432179> ?p ?o ?g. }
- W2302432179 endingPage "e0150424" @default.
- W2302432179 startingPage "e0150424" @default.
- W2302432179 abstract "Large scale, high-resolution global data on farm animal distributions are essential for spatially explicit assessments of the epidemiological, environmental and socio-economic impacts of the livestock sector. This has been the major motivation behind the development of the Gridded Livestock of the World (GLW) database, which has been extensively used since its first publication in 2007. The database relies on a downscaling methodology whereby census counts of animals in sub-national administrative units are redistributed at the level of grid cells as a function of a series of spatial covariates. The recent upgrade of GLW1 to GLW2 involved automating the processing, improvement of input data, and downscaling at a spatial resolution of 1 km per cell (5 km per cell in the earlier version). The underlying statistical methodology, however, remained unchanged. In this paper, we evaluate new methods to downscale census data with a higher accuracy and increased processing efficiency. Two main factors were evaluated, based on sample census datasets of cattle in Africa and chickens in Asia. First, we implemented and evaluated Random Forest models (RF) instead of stratified regressions. Second, we investigated whether models that predicted the number of animals per rural person (per capita) could provide better downscaled estimates than the previous approach that predicted absolute densities (animals per km2). RF models consistently provided better predictions than the stratified regressions for both continents and species. The benefit of per capita over absolute density models varied according to the species and continent. In addition, different technical options were evaluated to reduce the processing time while maintaining their predictive power. Future GLW runs (GLW 3.0) will apply the new RF methodology with optimized modelling options. The potential benefit of per capita models will need to be further investigated with a better distinction between rural and agricultural populations." @default.
- W2302432179 created "2016-06-24" @default.
- W2302432179 creator A5022070493 @default.
- W2302432179 creator A5052078209 @default.
- W2302432179 creator A5065539853 @default.
- W2302432179 creator A5066053082 @default.
- W2302432179 creator A5083858029 @default.
- W2302432179 creator A5091836669 @default.
- W2302432179 date "2016-03-15" @default.
- W2302432179 modified "2023-10-11" @default.
- W2302432179 title "Using Random Forest to Improve the Downscaling of Global Livestock Census Data" @default.
- W2302432179 cites W1922648072 @default.
- W2302432179 cites W1981012806 @default.
- W2302432179 cites W1981213426 @default.
- W2302432179 cites W1995996526 @default.
- W2302432179 cites W2000691429 @default.
- W2302432179 cites W2021603915 @default.
- W2302432179 cites W2023607510 @default.
- W2302432179 cites W2038752330 @default.
- W2302432179 cites W2041589051 @default.
- W2302432179 cites W2052458288 @default.
- W2302432179 cites W2057442840 @default.
- W2302432179 cites W2069882289 @default.
- W2302432179 cites W2072093516 @default.
- W2302432179 cites W2077570405 @default.
- W2302432179 cites W2081492950 @default.
- W2302432179 cites W2081496931 @default.
- W2302432179 cites W2087228035 @default.
- W2302432179 cites W2088133484 @default.
- W2302432179 cites W2101409709 @default.
- W2302432179 cites W2108789728 @default.
- W2302432179 cites W2112315008 @default.
- W2302432179 cites W2112776483 @default.
- W2302432179 cites W2125834258 @default.
- W2302432179 cites W2127573370 @default.
- W2302432179 cites W2128584547 @default.
- W2302432179 cites W2129324983 @default.
- W2302432179 cites W2139086914 @default.
- W2302432179 cites W2155831102 @default.
- W2302432179 cites W2272473773 @default.
- W2302432179 cites W2911964244 @default.
- W2302432179 doi "https://doi.org/10.1371/journal.pone.0150424" @default.
- W2302432179 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4792414" @default.
- W2302432179 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26977807" @default.
- W2302432179 hasPublicationYear "2016" @default.
- W2302432179 type Work @default.
- W2302432179 sameAs 2302432179 @default.
- W2302432179 citedByCount "50" @default.
- W2302432179 countsByYear W23024321792016 @default.
- W2302432179 countsByYear W23024321792017 @default.
- W2302432179 countsByYear W23024321792018 @default.
- W2302432179 countsByYear W23024321792019 @default.
- W2302432179 countsByYear W23024321792020 @default.
- W2302432179 countsByYear W23024321792021 @default.
- W2302432179 countsByYear W23024321792022 @default.
- W2302432179 countsByYear W23024321792023 @default.
- W2302432179 crossrefType "journal-article" @default.
- W2302432179 hasAuthorship W2302432179A5022070493 @default.
- W2302432179 hasAuthorship W2302432179A5052078209 @default.
- W2302432179 hasAuthorship W2302432179A5065539853 @default.
- W2302432179 hasAuthorship W2302432179A5066053082 @default.
- W2302432179 hasAuthorship W2302432179A5083858029 @default.
- W2302432179 hasAuthorship W2302432179A5091836669 @default.
- W2302432179 hasBestOaLocation W23024321791 @default.
- W2302432179 hasConcept C105795698 @default.
- W2302432179 hasConcept C107054158 @default.
- W2302432179 hasConcept C112964050 @default.
- W2302432179 hasConcept C118671147 @default.
- W2302432179 hasConcept C127598652 @default.
- W2302432179 hasConcept C132651083 @default.
- W2302432179 hasConcept C144024400 @default.
- W2302432179 hasConcept C149782125 @default.
- W2302432179 hasConcept C149923435 @default.
- W2302432179 hasConcept C153294291 @default.
- W2302432179 hasConcept C18903297 @default.
- W2302432179 hasConcept C205649164 @default.
- W2302432179 hasConcept C2908647359 @default.
- W2302432179 hasConcept C33923547 @default.
- W2302432179 hasConcept C39432304 @default.
- W2302432179 hasConcept C41156917 @default.
- W2302432179 hasConcept C52130261 @default.
- W2302432179 hasConcept C86803240 @default.
- W2302432179 hasConcept C97137747 @default.
- W2302432179 hasConceptScore W2302432179C105795698 @default.
- W2302432179 hasConceptScore W2302432179C107054158 @default.
- W2302432179 hasConceptScore W2302432179C112964050 @default.
- W2302432179 hasConceptScore W2302432179C118671147 @default.
- W2302432179 hasConceptScore W2302432179C127598652 @default.
- W2302432179 hasConceptScore W2302432179C132651083 @default.
- W2302432179 hasConceptScore W2302432179C144024400 @default.
- W2302432179 hasConceptScore W2302432179C149782125 @default.
- W2302432179 hasConceptScore W2302432179C149923435 @default.
- W2302432179 hasConceptScore W2302432179C153294291 @default.
- W2302432179 hasConceptScore W2302432179C18903297 @default.
- W2302432179 hasConceptScore W2302432179C205649164 @default.
- W2302432179 hasConceptScore W2302432179C2908647359 @default.
- W2302432179 hasConceptScore W2302432179C33923547 @default.
- W2302432179 hasConceptScore W2302432179C39432304 @default.