Matches in SemOpenAlex for { <https://semopenalex.org/work/W2304071093> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2304071093 abstract "Pattern recognition using symbolic dynamics is a new field of research. This dissertation uses symbolic dynamic filtering for detection data-driven pattern analysis. Specifically, the problem of anomaly detection, which is defined as deviation from the normally observed patterns using Symbolic Dynamic Filtering (SDF) has been investigated. The proposed SDF method is further extended to two dimensional datasets, where it is essential to extract spatial information for meaningful pattern recognition. SDF attempts to model the time-series dataset through the statistics observed in a representative symbol sequence. The conversion of a time-series sequence is an irreversible process, in the sense that it is subjected to loss of information. It is essential that this crucial conversion is accomplished in a manner that retains the relevant patterns in the data sequence. Instead of converting the time-series data directly to symbols, this dissertation explores usage of the analytic signal for symbol generation. The analytic signal space provides a snapshot of the signal instantaneous amplitude and phase which allows retention of relevant information of the time series in the symbol sequence. The partitions are derived from the distribution of the magnitude and phase of the analytic signal. The analytic signal space partitioning scheme is extended to the two-dimensional domain to generate symbols from data streams such as images. The wavelet transform provides flexibility in the analysis of a signal to extract relevant information from a signal while being relatively immune to noise. A systematic, unambiguous method for partitioning the set of wavelet coefficients to symbols is also developed in this dissertation. The partitioning is followed by the representation of the statistics of the symbols with finite state automata. Together, the partitioning algorithm and finite state machine is called the Symbolic Dynamic Filter, where the symbols are modeled by a special class of finite state automata called the D-Markov machine. Construction of the D-Markov machine is extended to model two-dimensional symbol matrices unambiguously, retaining all the information about each symbol neighborhood statistics. The SDF algorithm is validated on data obtained from experiments conducted in a laboratory. It is first applied to detect anomalies in a non-linear system, governed by the Duffing equation. Experiments were conducted to generate images from a microscope camera monitoring the surface of a polycrystalline alloy specimen under fluctuating stress. The two-dimensional SDF algorithm is used to analyze these images to detect and quantify the appearance and propagation of a surface flaw on the surface of the specimen." @default.
- W2304071093 created "2016-06-24" @default.
- W2304071093 creator A5007446398 @default.
- W2304071093 creator A5035668981 @default.
- W2304071093 creator A5041594244 @default.
- W2304071093 date "2009-01-01" @default.
- W2304071093 modified "2023-09-26" @default.
- W2304071093 title "Pattern recognition using symbolic dynamic filtering" @default.
- W2304071093 hasPublicationYear "2009" @default.
- W2304071093 type Work @default.
- W2304071093 sameAs 2304071093 @default.
- W2304071093 citedByCount "0" @default.
- W2304071093 crossrefType "journal-article" @default.
- W2304071093 hasAuthorship W2304071093A5007446398 @default.
- W2304071093 hasAuthorship W2304071093A5035668981 @default.
- W2304071093 hasAuthorship W2304071093A5041594244 @default.
- W2304071093 hasConcept C11413529 @default.
- W2304071093 hasConcept C119857082 @default.
- W2304071093 hasConcept C124101348 @default.
- W2304071093 hasConcept C151406439 @default.
- W2304071093 hasConcept C153180895 @default.
- W2304071093 hasConcept C154945302 @default.
- W2304071093 hasConcept C199360897 @default.
- W2304071093 hasConcept C2778112365 @default.
- W2304071093 hasConcept C2779843651 @default.
- W2304071093 hasConcept C33923547 @default.
- W2304071093 hasConcept C41008148 @default.
- W2304071093 hasConcept C47432892 @default.
- W2304071093 hasConcept C54355233 @default.
- W2304071093 hasConcept C65620979 @default.
- W2304071093 hasConcept C80444323 @default.
- W2304071093 hasConcept C86803240 @default.
- W2304071093 hasConceptScore W2304071093C11413529 @default.
- W2304071093 hasConceptScore W2304071093C119857082 @default.
- W2304071093 hasConceptScore W2304071093C124101348 @default.
- W2304071093 hasConceptScore W2304071093C151406439 @default.
- W2304071093 hasConceptScore W2304071093C153180895 @default.
- W2304071093 hasConceptScore W2304071093C154945302 @default.
- W2304071093 hasConceptScore W2304071093C199360897 @default.
- W2304071093 hasConceptScore W2304071093C2778112365 @default.
- W2304071093 hasConceptScore W2304071093C2779843651 @default.
- W2304071093 hasConceptScore W2304071093C33923547 @default.
- W2304071093 hasConceptScore W2304071093C41008148 @default.
- W2304071093 hasConceptScore W2304071093C47432892 @default.
- W2304071093 hasConceptScore W2304071093C54355233 @default.
- W2304071093 hasConceptScore W2304071093C65620979 @default.
- W2304071093 hasConceptScore W2304071093C80444323 @default.
- W2304071093 hasConceptScore W2304071093C86803240 @default.
- W2304071093 hasLocation W23040710931 @default.
- W2304071093 hasOpenAccess W2304071093 @default.
- W2304071093 hasPrimaryLocation W23040710931 @default.
- W2304071093 hasRelatedWork W1615644585 @default.
- W2304071093 hasRelatedWork W1666207559 @default.
- W2304071093 hasRelatedWork W1717493837 @default.
- W2304071093 hasRelatedWork W1972122908 @default.
- W2304071093 hasRelatedWork W2009717889 @default.
- W2304071093 hasRelatedWork W2020305404 @default.
- W2304071093 hasRelatedWork W2030264989 @default.
- W2304071093 hasRelatedWork W2030299546 @default.
- W2304071093 hasRelatedWork W2034570973 @default.
- W2304071093 hasRelatedWork W2057757675 @default.
- W2304071093 hasRelatedWork W2064817593 @default.
- W2304071093 hasRelatedWork W2071699543 @default.
- W2304071093 hasRelatedWork W2103144162 @default.
- W2304071093 hasRelatedWork W2114284042 @default.
- W2304071093 hasRelatedWork W2123497271 @default.
- W2304071093 hasRelatedWork W2135597960 @default.
- W2304071093 hasRelatedWork W2150080215 @default.
- W2304071093 hasRelatedWork W2150332512 @default.
- W2304071093 hasRelatedWork W42968546 @default.
- W2304071093 hasRelatedWork W2820505323 @default.
- W2304071093 isParatext "false" @default.
- W2304071093 isRetracted "false" @default.
- W2304071093 magId "2304071093" @default.
- W2304071093 workType "article" @default.