Matches in SemOpenAlex for { <https://semopenalex.org/work/W2305253737> ?p ?o ?g. }
- W2305253737 endingPage "3763" @default.
- W2305253737 startingPage "3749" @default.
- W2305253737 abstract "Prediction of time series data is of relevance for many industrial applications. The prediction can be made in one-step and multi-step ahead. For predictive maintenance, multi-step-ahead prediction is of interest for projecting the evolution of the future conditions of the equipment of interest, computing the remaining useful life and taking corresponding maintenance decisions. Recursive prediction is one of the popular strategies for multi-step-ahead prediction. SVM is a popular data-driven approach that has been used for recursive multi-step-ahead prediction. Tuning the hyperparameters in SVM during the training process is challenging, and normally the hyperparameters are tuned by solving an optimization problem. This paper analyses the possible objectives of the optimization for tuning hyperparameters. Through experiments on one synthetic dataset and two real time series data, related to the prediction of wind speed in a region and leakage from the reactor coolant pump in a nuclear power plant, a bi-objective optimization combining mean absolute derivatives and accuracy on all prediction steps is shown to be the best choice for tuning SVM hyperparameters for recursive multi-step-ahead prediction." @default.
- W2305253737 created "2016-06-24" @default.
- W2305253737 creator A5012431211 @default.
- W2305253737 creator A5064354572 @default.
- W2305253737 date "2016-03-19" @default.
- W2305253737 modified "2023-09-23" @default.
- W2305253737 title "SVM hyperparameters tuning for recursive multi-step-ahead prediction" @default.
- W2305253737 cites W1193688739 @default.
- W2305253737 cites W1194762648 @default.
- W2305253737 cites W1556800872 @default.
- W2305253737 cites W1575661061 @default.
- W2305253737 cites W1663792126 @default.
- W2305253737 cites W1966884757 @default.
- W2305253737 cites W1972985055 @default.
- W2305253737 cites W1980293156 @default.
- W2305253737 cites W1980432290 @default.
- W2305253737 cites W1990565902 @default.
- W2305253737 cites W1990979046 @default.
- W2305253737 cites W2002579289 @default.
- W2305253737 cites W2003706483 @default.
- W2305253737 cites W2004041476 @default.
- W2305253737 cites W2006169073 @default.
- W2305253737 cites W2014529054 @default.
- W2305253737 cites W2020397320 @default.
- W2305253737 cites W2022173539 @default.
- W2305253737 cites W2025391890 @default.
- W2305253737 cites W2028072219 @default.
- W2305253737 cites W2030166992 @default.
- W2305253737 cites W2034751647 @default.
- W2305253737 cites W2039389092 @default.
- W2305253737 cites W2041727086 @default.
- W2305253737 cites W2045186954 @default.
- W2305253737 cites W2049387654 @default.
- W2305253737 cites W2057018326 @default.
- W2305253737 cites W2058661475 @default.
- W2305253737 cites W2067688816 @default.
- W2305253737 cites W2067824962 @default.
- W2305253737 cites W2069262928 @default.
- W2305253737 cites W2071280205 @default.
- W2305253737 cites W2077942936 @default.
- W2305253737 cites W2083402708 @default.
- W2305253737 cites W2085147830 @default.
- W2305253737 cites W2089822378 @default.
- W2305253737 cites W2118012246 @default.
- W2305253737 cites W2121069620 @default.
- W2305253737 cites W2123795621 @default.
- W2305253737 cites W2127342270 @default.
- W2305253737 cites W2158001550 @default.
- W2305253737 cites W2172064003 @default.
- W2305253737 cites W2232748179 @default.
- W2305253737 cites W4229680264 @default.
- W2305253737 cites W4236706032 @default.
- W2305253737 cites W4237069172 @default.
- W2305253737 doi "https://doi.org/10.1007/s00521-016-2272-1" @default.
- W2305253737 hasPublicationYear "2016" @default.
- W2305253737 type Work @default.
- W2305253737 sameAs 2305253737 @default.
- W2305253737 citedByCount "25" @default.
- W2305253737 countsByYear W23052537372017 @default.
- W2305253737 countsByYear W23052537372018 @default.
- W2305253737 countsByYear W23052537372019 @default.
- W2305253737 countsByYear W23052537372020 @default.
- W2305253737 countsByYear W23052537372021 @default.
- W2305253737 countsByYear W23052537372022 @default.
- W2305253737 countsByYear W23052537372023 @default.
- W2305253737 crossrefType "journal-article" @default.
- W2305253737 hasAuthorship W2305253737A5012431211 @default.
- W2305253737 hasAuthorship W2305253737A5064354572 @default.
- W2305253737 hasBestOaLocation W23052537372 @default.
- W2305253737 hasConcept C10485038 @default.
- W2305253737 hasConcept C111919701 @default.
- W2305253737 hasConcept C119857082 @default.
- W2305253737 hasConcept C12267149 @default.
- W2305253737 hasConcept C124101348 @default.
- W2305253737 hasConcept C151406439 @default.
- W2305253737 hasConcept C154945302 @default.
- W2305253737 hasConcept C41008148 @default.
- W2305253737 hasConcept C8642999 @default.
- W2305253737 hasConcept C98045186 @default.
- W2305253737 hasConceptScore W2305253737C10485038 @default.
- W2305253737 hasConceptScore W2305253737C111919701 @default.
- W2305253737 hasConceptScore W2305253737C119857082 @default.
- W2305253737 hasConceptScore W2305253737C12267149 @default.
- W2305253737 hasConceptScore W2305253737C124101348 @default.
- W2305253737 hasConceptScore W2305253737C151406439 @default.
- W2305253737 hasConceptScore W2305253737C154945302 @default.
- W2305253737 hasConceptScore W2305253737C41008148 @default.
- W2305253737 hasConceptScore W2305253737C8642999 @default.
- W2305253737 hasConceptScore W2305253737C98045186 @default.
- W2305253737 hasIssue "12" @default.
- W2305253737 hasLocation W23052537371 @default.
- W2305253737 hasLocation W23052537372 @default.
- W2305253737 hasLocation W23052537373 @default.
- W2305253737 hasLocation W23052537374 @default.
- W2305253737 hasOpenAccess W2305253737 @default.
- W2305253737 hasPrimaryLocation W23052537371 @default.
- W2305253737 hasRelatedWork W3013125858 @default.
- W2305253737 hasRelatedWork W3014750173 @default.