Matches in SemOpenAlex for { <https://semopenalex.org/work/W2307267906> ?p ?o ?g. }
- W2307267906 endingPage "641" @default.
- W2307267906 startingPage "628" @default.
- W2307267906 abstract "State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics' technologies enable the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets, the variability both within and between variables (or observations) and may highlight data issues such as batch effects or outliers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can be applied to increase our understanding of biological systems in normal physiological function and disease." @default.
- W2307267906 created "2016-06-24" @default.
- W2307267906 creator A5009094417 @default.
- W2307267906 creator A5035674380 @default.
- W2307267906 creator A5051318124 @default.
- W2307267906 creator A5053991514 @default.
- W2307267906 creator A5057305577 @default.
- W2307267906 creator A5058082024 @default.
- W2307267906 date "2016-03-11" @default.
- W2307267906 modified "2023-10-14" @default.
- W2307267906 title "Dimension reduction techniques for the integrative analysis of multi-omics data" @default.
- W2307267906 cites W1488808450 @default.
- W2307267906 cites W1495781036 @default.
- W2307267906 cites W1518671722 @default.
- W2307267906 cites W1902027874 @default.
- W2307267906 cites W1943756471 @default.
- W2307267906 cites W1966327575 @default.
- W2307267906 cites W1967220865 @default.
- W2307267906 cites W1967696752 @default.
- W2307267906 cites W1967827763 @default.
- W2307267906 cites W1968206427 @default.
- W2307267906 cites W1974333176 @default.
- W2307267906 cites W1974948854 @default.
- W2307267906 cites W1984250222 @default.
- W2307267906 cites W1984776107 @default.
- W2307267906 cites W1985405118 @default.
- W2307267906 cites W1988202895 @default.
- W2307267906 cites W1990022083 @default.
- W2307267906 cites W1992549770 @default.
- W2307267906 cites W2008929650 @default.
- W2307267906 cites W2016864867 @default.
- W2307267906 cites W2019624319 @default.
- W2307267906 cites W2021799988 @default.
- W2307267906 cites W2024165284 @default.
- W2307267906 cites W2025303952 @default.
- W2307267906 cites W2025341678 @default.
- W2307267906 cites W2026096252 @default.
- W2307267906 cites W2028951287 @default.
- W2307267906 cites W2031674672 @default.
- W2307267906 cites W2034400748 @default.
- W2307267906 cites W2041326514 @default.
- W2307267906 cites W2043795468 @default.
- W2307267906 cites W2044809283 @default.
- W2307267906 cites W2056571799 @default.
- W2307267906 cites W2069223264 @default.
- W2307267906 cites W2070161604 @default.
- W2307267906 cites W2071128523 @default.
- W2307267906 cites W2074973972 @default.
- W2307267906 cites W2076616438 @default.
- W2307267906 cites W2079210771 @default.
- W2307267906 cites W2079625864 @default.
- W2307267906 cites W2080800567 @default.
- W2307267906 cites W2081043824 @default.
- W2307267906 cites W2082253757 @default.
- W2307267906 cites W2088161534 @default.
- W2307267906 cites W2094630982 @default.
- W2307267906 cites W2096192437 @default.
- W2307267906 cites W2097057782 @default.
- W2307267906 cites W2097553067 @default.
- W2307267906 cites W2098290597 @default.
- W2307267906 cites W2099388546 @default.
- W2307267906 cites W2099741732 @default.
- W2307267906 cites W2108837778 @default.
- W2307267906 cites W2112511512 @default.
- W2307267906 cites W2114813480 @default.
- W2307267906 cites W2115202379 @default.
- W2307267906 cites W2116662982 @default.
- W2307267906 cites W2117968640 @default.
- W2307267906 cites W2118645968 @default.
- W2307267906 cites W2118827995 @default.
- W2307267906 cites W2119479037 @default.
- W2307267906 cites W2124589071 @default.
- W2307267906 cites W2124929421 @default.
- W2307267906 cites W2127553405 @default.
- W2307267906 cites W2129256542 @default.
- W2307267906 cites W2133946066 @default.
- W2307267906 cites W2140141449 @default.
- W2307267906 cites W2142802314 @default.
- W2307267906 cites W2150159788 @default.
- W2307267906 cites W2158485828 @default.
- W2307267906 cites W2164222385 @default.
- W2307267906 cites W2165384723 @default.
- W2307267906 cites W2167941657 @default.
- W2307267906 cites W2170376772 @default.
- W2307267906 cites W2170798597 @default.
- W2307267906 cites W2294798173 @default.
- W2307267906 cites W4231135982 @default.
- W2307267906 cites W4250729151 @default.
- W2307267906 cites W4292053589 @default.
- W2307267906 cites W4312258136 @default.
- W2307267906 doi "https://doi.org/10.1093/bib/bbv108" @default.
- W2307267906 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4945831" @default.
- W2307267906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26969681" @default.
- W2307267906 hasPublicationYear "2016" @default.
- W2307267906 type Work @default.
- W2307267906 sameAs 2307267906 @default.
- W2307267906 citedByCount "260" @default.
- W2307267906 countsByYear W23072679062016 @default.