Matches in SemOpenAlex for { <https://semopenalex.org/work/W2307897242> ?p ?o ?g. }
- W2307897242 endingPage "1" @default.
- W2307897242 startingPage "1" @default.
- W2307897242 abstract "Several techniques have been recently proposed to adapt Big-Data streaming applications to existing many core platforms. Among these techniques, online reinforcement learning methods have been proposed that learn how to adapt at run-time the throughput and resources allocated to the various streaming tasks depending on dynamically changing data stream characteristics and the desired applications performance (e.g., accuracy). However, most of state-of-the-art techniques consider only one single stream input in its application model input and assume that the system knows the amount of resources to allocate to each task to achieve a desired performance. To address these limitations, in this paper we propose a new systematic and efficient methodology and associated algorithms for online learning and energy-efficient scheduling of Big-Data streaming applications with multiple streams on many core systems with resource constraints. We formalize the problem of multi-stream scheduling as a staged decision problem in which the performance obtained for various resource allocations is unknown. The proposed scheduling methodology uses a novel class of online adaptive learning techniques which we refer to as staged multi-armed bandits (S-MAB). Our scheduler is able to learn online which processing method to assign to each stream and how to allocate its resources over time in order to maximize the performance on the fly, at run-time, without having access to any offline information. The proposed scheduler, applied on a face detection streaming application and without using any offline information, is able to achieve similar performance compared to an optimal semi-online solution that has full knowledge of the input stream where the differences in throughput, observed quality, resource usage and energy efficiency are less than 1, 0.3, 0.2 and 4 percent respectively." @default.
- W2307897242 created "2016-06-24" @default.
- W2307897242 creator A5035671753 @default.
- W2307897242 creator A5053015746 @default.
- W2307897242 creator A5074236306 @default.
- W2307897242 creator A5091539085 @default.
- W2307897242 date "2016-01-01" @default.
- W2307897242 modified "2023-10-16" @default.
- W2307897242 title "Big-Data Streaming Applications Scheduling Based on Staged Multi-armed Bandits" @default.
- W2307897242 cites W1510252230 @default.
- W2307897242 cites W1973476981 @default.
- W2307897242 cites W2009551863 @default.
- W2307897242 cites W2064065863 @default.
- W2307897242 cites W2093562354 @default.
- W2307897242 cites W2096904745 @default.
- W2307897242 cites W2099419573 @default.
- W2307897242 cites W2102302373 @default.
- W2307897242 cites W2105556121 @default.
- W2307897242 cites W2108224519 @default.
- W2307897242 cites W2109005078 @default.
- W2307897242 cites W2121587577 @default.
- W2307897242 cites W2123921160 @default.
- W2307897242 cites W2140571193 @default.
- W2307897242 cites W2149943599 @default.
- W2307897242 cites W2151201721 @default.
- W2307897242 cites W2158368213 @default.
- W2307897242 cites W2164598857 @default.
- W2307897242 cites W2168405694 @default.
- W2307897242 cites W2334782222 @default.
- W2307897242 cites W2914156981 @default.
- W2307897242 cites W3102381603 @default.
- W2307897242 cites W3103604572 @default.
- W2307897242 cites W4238931997 @default.
- W2307897242 doi "https://doi.org/10.1109/tc.2016.2550454" @default.
- W2307897242 hasPublicationYear "2016" @default.
- W2307897242 type Work @default.
- W2307897242 sameAs 2307897242 @default.
- W2307897242 citedByCount "12" @default.
- W2307897242 countsByYear W23078972422017 @default.
- W2307897242 countsByYear W23078972422019 @default.
- W2307897242 countsByYear W23078972422020 @default.
- W2307897242 countsByYear W23078972422021 @default.
- W2307897242 countsByYear W23078972422022 @default.
- W2307897242 crossrefType "journal-article" @default.
- W2307897242 hasAuthorship W2307897242A5035671753 @default.
- W2307897242 hasAuthorship W2307897242A5053015746 @default.
- W2307897242 hasAuthorship W2307897242A5074236306 @default.
- W2307897242 hasAuthorship W2307897242A5091539085 @default.
- W2307897242 hasBestOaLocation W23078972422 @default.
- W2307897242 hasConcept C107027933 @default.
- W2307897242 hasConcept C119857082 @default.
- W2307897242 hasConcept C120314980 @default.
- W2307897242 hasConcept C124101348 @default.
- W2307897242 hasConcept C126255220 @default.
- W2307897242 hasConcept C154945302 @default.
- W2307897242 hasConcept C206729178 @default.
- W2307897242 hasConcept C2777611316 @default.
- W2307897242 hasConcept C2778484313 @default.
- W2307897242 hasConcept C2780490138 @default.
- W2307897242 hasConcept C2986087404 @default.
- W2307897242 hasConcept C33923547 @default.
- W2307897242 hasConcept C41008148 @default.
- W2307897242 hasConcept C49774154 @default.
- W2307897242 hasConcept C75684735 @default.
- W2307897242 hasConcept C76155785 @default.
- W2307897242 hasConcept C79403827 @default.
- W2307897242 hasConcept C89198739 @default.
- W2307897242 hasConcept C97541855 @default.
- W2307897242 hasConceptScore W2307897242C107027933 @default.
- W2307897242 hasConceptScore W2307897242C119857082 @default.
- W2307897242 hasConceptScore W2307897242C120314980 @default.
- W2307897242 hasConceptScore W2307897242C124101348 @default.
- W2307897242 hasConceptScore W2307897242C126255220 @default.
- W2307897242 hasConceptScore W2307897242C154945302 @default.
- W2307897242 hasConceptScore W2307897242C206729178 @default.
- W2307897242 hasConceptScore W2307897242C2777611316 @default.
- W2307897242 hasConceptScore W2307897242C2778484313 @default.
- W2307897242 hasConceptScore W2307897242C2780490138 @default.
- W2307897242 hasConceptScore W2307897242C2986087404 @default.
- W2307897242 hasConceptScore W2307897242C33923547 @default.
- W2307897242 hasConceptScore W2307897242C41008148 @default.
- W2307897242 hasConceptScore W2307897242C49774154 @default.
- W2307897242 hasConceptScore W2307897242C75684735 @default.
- W2307897242 hasConceptScore W2307897242C76155785 @default.
- W2307897242 hasConceptScore W2307897242C79403827 @default.
- W2307897242 hasConceptScore W2307897242C89198739 @default.
- W2307897242 hasConceptScore W2307897242C97541855 @default.
- W2307897242 hasLocation W23078972421 @default.
- W2307897242 hasLocation W23078972422 @default.
- W2307897242 hasLocation W23078972423 @default.
- W2307897242 hasLocation W23078972424 @default.
- W2307897242 hasOpenAccess W2307897242 @default.
- W2307897242 hasPrimaryLocation W23078972421 @default.
- W2307897242 hasRelatedWork W1424397396 @default.
- W2307897242 hasRelatedWork W1561841570 @default.
- W2307897242 hasRelatedWork W1590160695 @default.
- W2307897242 hasRelatedWork W1658774705 @default.
- W2307897242 hasRelatedWork W2508807458 @default.