Matches in SemOpenAlex for { <https://semopenalex.org/work/W2308165216> ?p ?o ?g. }
- W2308165216 abstract "This thesis addresses the development of geometric approximation algorithms for huge datasets and is subdivided into two parts. The first part deals with algorithms for facility location problems, and the second part is concerned with the problem of computing compact representations of finite metric spaces. Facility location problems belong to the most studied problems in combinatorial optimization and operations research. In the facility location variants considered in this thesis, the input consists of a set of points where each point is a client as well as a potential location for a facility. Each client has to be served by a facility. However, connecting a client incurs connection costs, and opening or maintaining a facility causes so-called opening costs. The goal is to open a subset of the input points as facilities such that the total cost of the system is minimized. We are particularly interested in facility location problems for large-scale distributed systems of mobile objects. In order to be able to analyze such complex systems, we examine the following partial aspects: • At first, we present a distributed algorithm that, in case of uniform opening costs for the facilities and uniform demands of the clients, computes in only three communication rounds a constant-factor approximation for the metric facility location problem. • In Chapter 4, we introduce a mobile facility location problem where the input points move continuously in a constant-dimensional Euclidean space. In contrast to Chapter 3, we also take non-uniform opening costs for the facilities and non-uniform demands of the clients into account. We propose an event-driven data structure that efficiently maintains a subset of the mobile points as open facilities such that, at any time, the total cost of the system is at most a constant factor larger than the optimal facility location cost. • In Chapter 5, we consider again a uniform facility location problem. However, this time, we develop a streaming algorithm where the input stream consists of insert and delete operations of points from a constant-dimensional Euclidean space. While reading the input stream, our algorithm maintains a summary of the current point set in a subtle way with the result that the required space is polylogarithmic in the size of the input stream and, at any time, it can output a constant-factor approximation of the optimal facility location cost. • In the next chapter, we give an efficient streaming implementation of a k-means clustering algorithm. The k-means clustering problem is closely related to the facility" @default.
- W2308165216 created "2016-06-24" @default.
- W2308165216 creator A5062592602 @default.
- W2308165216 date "2011-02-01" @default.
- W2308165216 modified "2023-09-23" @default.
- W2308165216 title "Approximation Techniques for Facility Location and Their Applications in Metric Embeddings" @default.
- W2308165216 cites W113414296 @default.
- W2308165216 cites W125464309 @default.
- W2308165216 cites W1489608363 @default.
- W2308165216 cites W1499673022 @default.
- W2308165216 cites W1504741231 @default.
- W2308165216 cites W1530239281 @default.
- W2308165216 cites W1530581016 @default.
- W2308165216 cites W1568961751 @default.
- W2308165216 cites W1816717522 @default.
- W2308165216 cites W1869076784 @default.
- W2308165216 cites W1949687736 @default.
- W2308165216 cites W1964089073 @default.
- W2308165216 cites W1965814422 @default.
- W2308165216 cites W1965972569 @default.
- W2308165216 cites W1968301997 @default.
- W2308165216 cites W1973529814 @default.
- W2308165216 cites W1975248037 @default.
- W2308165216 cites W1977429445 @default.
- W2308165216 cites W1977541023 @default.
- W2308165216 cites W1978117135 @default.
- W2308165216 cites W1978906111 @default.
- W2308165216 cites W1979630448 @default.
- W2308165216 cites W1981313592 @default.
- W2308165216 cites W1982991092 @default.
- W2308165216 cites W1987047329 @default.
- W2308165216 cites W1992598798 @default.
- W2308165216 cites W1995718774 @default.
- W2308165216 cites W2001907516 @default.
- W2308165216 cites W2003207175 @default.
- W2308165216 cites W2006514056 @default.
- W2308165216 cites W2012929417 @default.
- W2308165216 cites W2033647570 @default.
- W2308165216 cites W2034582728 @default.
- W2308165216 cites W2042736474 @default.
- W2308165216 cites W2045134120 @default.
- W2308165216 cites W2045533739 @default.
- W2308165216 cites W2045964207 @default.
- W2308165216 cites W2048902080 @default.
- W2308165216 cites W2049744118 @default.
- W2308165216 cites W2052494364 @default.
- W2308165216 cites W2052811387 @default.
- W2308165216 cites W2053578961 @default.
- W2308165216 cites W2054011861 @default.
- W2308165216 cites W2073459066 @default.
- W2308165216 cites W2073849744 @default.
- W2308165216 cites W2076014803 @default.
- W2308165216 cites W2080745194 @default.
- W2308165216 cites W2082353536 @default.
- W2308165216 cites W2086474457 @default.
- W2308165216 cites W2090964330 @default.
- W2308165216 cites W2091170478 @default.
- W2308165216 cites W2093521781 @default.
- W2308165216 cites W2094048240 @default.
- W2308165216 cites W2094974501 @default.
- W2308165216 cites W2095595785 @default.
- W2308165216 cites W2097309979 @default.
- W2308165216 cites W2097333461 @default.
- W2308165216 cites W2100369465 @default.
- W2308165216 cites W2101622070 @default.
- W2308165216 cites W2102815056 @default.
- W2308165216 cites W2103126020 @default.
- W2308165216 cites W2118224498 @default.
- W2308165216 cites W2121522678 @default.
- W2308165216 cites W2123297508 @default.
- W2308165216 cites W2127218421 @default.
- W2308165216 cites W2129751925 @default.
- W2308165216 cites W2132452995 @default.
- W2308165216 cites W2136442119 @default.
- W2308165216 cites W2139841919 @default.
- W2308165216 cites W2141245797 @default.
- W2308165216 cites W2143606444 @default.
- W2308165216 cites W2147670675 @default.
- W2308165216 cites W2149906774 @default.
- W2308165216 cites W2150593711 @default.
- W2308165216 cites W2151242668 @default.
- W2308165216 cites W2153962084 @default.
- W2308165216 cites W2156499390 @default.
- W2308165216 cites W2159525520 @default.
- W2308165216 cites W2163217488 @default.
- W2308165216 cites W2165142526 @default.
- W2308165216 cites W2166590374 @default.
- W2308165216 cites W2167816765 @default.
- W2308165216 cites W2169036209 @default.
- W2308165216 cites W2171125141 @default.
- W2308165216 cites W2199495299 @default.
- W2308165216 cites W2208163925 @default.
- W2308165216 cites W2295428206 @default.
- W2308165216 cites W2395889972 @default.
- W2308165216 cites W2399947893 @default.
- W2308165216 cites W2404671041 @default.
- W2308165216 cites W2464253171 @default.
- W2308165216 cites W2608158342 @default.
- W2308165216 cites W2611515161 @default.
- W2308165216 cites W2611754984 @default.