Matches in SemOpenAlex for { <https://semopenalex.org/work/W2308170743> ?p ?o ?g. }
- W2308170743 endingPage "130" @default.
- W2308170743 startingPage "120" @default.
- W2308170743 abstract "Non-viral, biomaterial-mediated gene delivery has the potential to treat many diseases, but is limited by low efficacy. Elucidating the bottlenecks of plasmid mass transfer can enable an improved understanding of biomaterial structure–function relationships, leading to next-generation rationally designed non-viral gene delivery vectors. As proof of principle, we transfected human primary glioblastoma cells using a poly(beta-amino ester) complexed with eGFP plasmid DNA. The polyplexes transfected 70.6 ± 0.6% of the cells with 101 ± 3% viability. The amount of DNA within the cytoplasm, nuclear envelope, and nuclei was assessed at multiple time points using fluorescent dye conjugated plasmid up to 24 h post-transfection using a quantitative multi-well plate-based flow cytometry assay. Conversion to plasmid counts and degradation kinetics were accounted for via quantitative PCR (plasmid degradation rate constants were determined to be 0.62 h−1 and 0.084 h−1 for fast and slow phases respectively). Quantitative cellular uptake, nuclear association, and nuclear uptake rate constants were determined by using a four-compartment first order mass-action model. The rate limiting step for these poly(beta-amino ester)/DNA polyplex nanoparticles was determined to be cellular uptake (7.5 × 10−4 h−1) and only 0.1% of the added dose was taken up by the human brain cancer cells, whereas 12% of internalized DNA successfully entered the nucleus (the rate of nuclear internalization of nuclear associated plasmid was 1.1 h−1). We describe an efficient new method for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles using flow cytometry to improve understanding and design of polymeric gene delivery nanoparticles. In this work, a quantitative high throughput flow cytometry-based assay and computational modeling approach was developed for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles. This method is significant as it can be used to elucidate structure–function relationships of gene delivery nanoparticles and improve their efficiency. This method was applied to a particular type of biodegradable polymer, a poly(beta-amino ester), that transfected human brain cancer cells with high efficacy and without cytotoxicity. A four-compartment first order mass-action kinetics model was found to model the experimental transport data well without requiring external fitting parameters. Quantitative rate constants were identified for the intracellular transport, including DNA degradation rate from polyplexes, cellular uptake rate, and nuclear uptake rate, with cellular uptake identified as the rate-limiting step." @default.
- W2308170743 created "2016-06-24" @default.
- W2308170743 creator A5001876568 @default.
- W2308170743 creator A5027082038 @default.
- W2308170743 creator A5029294194 @default.
- W2308170743 creator A5039484556 @default.
- W2308170743 creator A5043084243 @default.
- W2308170743 creator A5044803370 @default.
- W2308170743 creator A5079257907 @default.
- W2308170743 date "2016-06-01" @default.
- W2308170743 modified "2023-09-27" @default.
- W2308170743 title "Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry" @default.
- W2308170743 cites W1584395779 @default.
- W2308170743 cites W1888572540 @default.
- W2308170743 cites W1963827447 @default.
- W2308170743 cites W1965726357 @default.
- W2308170743 cites W1994612293 @default.
- W2308170743 cites W1998891630 @default.
- W2308170743 cites W2001663214 @default.
- W2308170743 cites W2001986771 @default.
- W2308170743 cites W2007831086 @default.
- W2308170743 cites W2010655741 @default.
- W2308170743 cites W2012437104 @default.
- W2308170743 cites W2012618194 @default.
- W2308170743 cites W2013482618 @default.
- W2308170743 cites W2018616490 @default.
- W2308170743 cites W2023158019 @default.
- W2308170743 cites W2024409869 @default.
- W2308170743 cites W2025568235 @default.
- W2308170743 cites W2045052963 @default.
- W2308170743 cites W2045456195 @default.
- W2308170743 cites W2051712296 @default.
- W2308170743 cites W2052478070 @default.
- W2308170743 cites W2053495654 @default.
- W2308170743 cites W2056538995 @default.
- W2308170743 cites W2057879405 @default.
- W2308170743 cites W2058093119 @default.
- W2308170743 cites W2106594935 @default.
- W2308170743 cites W2107277218 @default.
- W2308170743 cites W2107929771 @default.
- W2308170743 cites W2122304523 @default.
- W2308170743 cites W2131309679 @default.
- W2308170743 cites W2149081648 @default.
- W2308170743 cites W2162296399 @default.
- W2308170743 cites W2166302914 @default.
- W2308170743 cites W2170255011 @default.
- W2308170743 cites W2192080449 @default.
- W2308170743 cites W2325089333 @default.
- W2308170743 cites W8313148 @default.
- W2308170743 doi "https://doi.org/10.1016/j.actbio.2016.03.036" @default.
- W2308170743 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5061650" @default.
- W2308170743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27019146" @default.
- W2308170743 hasPublicationYear "2016" @default.
- W2308170743 type Work @default.
- W2308170743 sameAs 2308170743 @default.
- W2308170743 citedByCount "50" @default.
- W2308170743 countsByYear W23081707432016 @default.
- W2308170743 countsByYear W23081707432017 @default.
- W2308170743 countsByYear W23081707432018 @default.
- W2308170743 countsByYear W23081707432019 @default.
- W2308170743 countsByYear W23081707432020 @default.
- W2308170743 countsByYear W23081707432021 @default.
- W2308170743 countsByYear W23081707432022 @default.
- W2308170743 countsByYear W23081707432023 @default.
- W2308170743 crossrefType "journal-article" @default.
- W2308170743 hasAuthorship W2308170743A5001876568 @default.
- W2308170743 hasAuthorship W2308170743A5027082038 @default.
- W2308170743 hasAuthorship W2308170743A5029294194 @default.
- W2308170743 hasAuthorship W2308170743A5039484556 @default.
- W2308170743 hasAuthorship W2308170743A5043084243 @default.
- W2308170743 hasAuthorship W2308170743A5044803370 @default.
- W2308170743 hasAuthorship W2308170743A5079257907 @default.
- W2308170743 hasBestOaLocation W23081707432 @default.
- W2308170743 hasConcept C104317684 @default.
- W2308170743 hasConcept C12554922 @default.
- W2308170743 hasConcept C135983454 @default.
- W2308170743 hasConcept C142613039 @default.
- W2308170743 hasConcept C153911025 @default.
- W2308170743 hasConcept C190062978 @default.
- W2308170743 hasConcept C22744801 @default.
- W2308170743 hasConcept C54009773 @default.
- W2308170743 hasConcept C552990157 @default.
- W2308170743 hasConcept C553184892 @default.
- W2308170743 hasConcept C55493867 @default.
- W2308170743 hasConcept C86803240 @default.
- W2308170743 hasConcept C95444343 @default.
- W2308170743 hasConceptScore W2308170743C104317684 @default.
- W2308170743 hasConceptScore W2308170743C12554922 @default.
- W2308170743 hasConceptScore W2308170743C135983454 @default.
- W2308170743 hasConceptScore W2308170743C142613039 @default.
- W2308170743 hasConceptScore W2308170743C153911025 @default.
- W2308170743 hasConceptScore W2308170743C190062978 @default.
- W2308170743 hasConceptScore W2308170743C22744801 @default.
- W2308170743 hasConceptScore W2308170743C54009773 @default.
- W2308170743 hasConceptScore W2308170743C552990157 @default.
- W2308170743 hasConceptScore W2308170743C553184892 @default.
- W2308170743 hasConceptScore W2308170743C55493867 @default.
- W2308170743 hasConceptScore W2308170743C86803240 @default.