Matches in SemOpenAlex for { <https://semopenalex.org/work/W2308207148> ?p ?o ?g. }
- W2308207148 abstract "Since 1992 the Italian local health units (LHU) gained financial independence and became responsible to provide and deliver health care at the local level. Management and financial accounting represent the tool utilized to monitor their net income and the working capital every year. From 2001 on, LHU budget data have being summarized by means of the “income statement”. The income statement is considered the most relevant form for the monitoring of healthcare expenditures. A big amount of data have been collected after that obligation of publishing the income statement. The application of new methods for a better understanding of relationships among variables would be worthwhile. The development of artificial neural networks (ANNs) can represent a useful tool to analyze the relationships among these variables. The purpose of this paper is showing the potentialities of ANNs and especially of artificial neural networks what-if theory (AWIT) model when applied to health budgetary data. This innovative methodology has been employed, in the present paper, to analyze data from five Italian Regions, carrying out some comparison among them. In short, using one dataset that is defined as being the ideal standard containing the relationships necessary to measure desired outcomes, another dataset can be compared to determine its degree of closeness. We can determine the degree of closeness of the second or treated dataset with the original standard. This is the key concept of the method called AWIT. The descriptive analysis carried out outlines the areas of waste LHU and suggests to develop strategies to contrast an inefficient use of resources." @default.
- W2308207148 created "2016-06-24" @default.
- W2308207148 creator A5000892248 @default.
- W2308207148 creator A5003585738 @default.
- W2308207148 creator A5005617144 @default.
- W2308207148 creator A5011450543 @default.
- W2308207148 creator A5021545379 @default.
- W2308207148 creator A5031718807 @default.
- W2308207148 creator A5037990636 @default.
- W2308207148 creator A5074903334 @default.
- W2308207148 date "2016-03-24" @default.
- W2308207148 modified "2023-09-30" @default.
- W2308207148 title "Artificial neural networks and their potentialities in analyzing budget health data: an application for Italy of what-if theory" @default.
- W2308207148 cites W1964155876 @default.
- W2308207148 cites W2063608549 @default.
- W2308207148 cites W2093933815 @default.
- W2308207148 cites W2100495367 @default.
- W2308207148 cites W2113438859 @default.
- W2308207148 cites W2120432001 @default.
- W2308207148 cites W2120480077 @default.
- W2308207148 cites W2125974474 @default.
- W2308207148 cites W2136922672 @default.
- W2308207148 cites W4231109964 @default.
- W2308207148 doi "https://doi.org/10.1007/s11135-016-0329-y" @default.
- W2308207148 hasPublicationYear "2016" @default.
- W2308207148 type Work @default.
- W2308207148 sameAs 2308207148 @default.
- W2308207148 citedByCount "2" @default.
- W2308207148 countsByYear W23082071482020 @default.
- W2308207148 crossrefType "journal-article" @default.
- W2308207148 hasAuthorship W2308207148A5000892248 @default.
- W2308207148 hasAuthorship W2308207148A5003585738 @default.
- W2308207148 hasAuthorship W2308207148A5005617144 @default.
- W2308207148 hasAuthorship W2308207148A5011450543 @default.
- W2308207148 hasAuthorship W2308207148A5021545379 @default.
- W2308207148 hasAuthorship W2308207148A5031718807 @default.
- W2308207148 hasAuthorship W2308207148A5037990636 @default.
- W2308207148 hasAuthorship W2308207148A5074903334 @default.
- W2308207148 hasBestOaLocation W23082071482 @default.
- W2308207148 hasConcept C121955636 @default.
- W2308207148 hasConcept C127413603 @default.
- W2308207148 hasConcept C134306372 @default.
- W2308207148 hasConcept C138262166 @default.
- W2308207148 hasConcept C144133560 @default.
- W2308207148 hasConcept C154945302 @default.
- W2308207148 hasConcept C162118730 @default.
- W2308207148 hasConcept C162324750 @default.
- W2308207148 hasConcept C183206440 @default.
- W2308207148 hasConcept C202532154 @default.
- W2308207148 hasConcept C2779545769 @default.
- W2308207148 hasConcept C2780015409 @default.
- W2308207148 hasConcept C33923547 @default.
- W2308207148 hasConcept C41008148 @default.
- W2308207148 hasConcept C42475967 @default.
- W2308207148 hasConcept C50644808 @default.
- W2308207148 hasConcept C539667460 @default.
- W2308207148 hasConceptScore W2308207148C121955636 @default.
- W2308207148 hasConceptScore W2308207148C127413603 @default.
- W2308207148 hasConceptScore W2308207148C134306372 @default.
- W2308207148 hasConceptScore W2308207148C138262166 @default.
- W2308207148 hasConceptScore W2308207148C144133560 @default.
- W2308207148 hasConceptScore W2308207148C154945302 @default.
- W2308207148 hasConceptScore W2308207148C162118730 @default.
- W2308207148 hasConceptScore W2308207148C162324750 @default.
- W2308207148 hasConceptScore W2308207148C183206440 @default.
- W2308207148 hasConceptScore W2308207148C202532154 @default.
- W2308207148 hasConceptScore W2308207148C2779545769 @default.
- W2308207148 hasConceptScore W2308207148C2780015409 @default.
- W2308207148 hasConceptScore W2308207148C33923547 @default.
- W2308207148 hasConceptScore W2308207148C41008148 @default.
- W2308207148 hasConceptScore W2308207148C42475967 @default.
- W2308207148 hasConceptScore W2308207148C50644808 @default.
- W2308207148 hasConceptScore W2308207148C539667460 @default.
- W2308207148 hasLocation W23082071481 @default.
- W2308207148 hasLocation W23082071482 @default.
- W2308207148 hasOpenAccess W2308207148 @default.
- W2308207148 hasPrimaryLocation W23082071481 @default.
- W2308207148 hasRelatedWork W1444106339 @default.
- W2308207148 hasRelatedWork W1584663810 @default.
- W2308207148 hasRelatedWork W2056409334 @default.
- W2308207148 hasRelatedWork W2131471405 @default.
- W2308207148 hasRelatedWork W2208295042 @default.
- W2308207148 hasRelatedWork W2244117245 @default.
- W2308207148 hasRelatedWork W2272745396 @default.
- W2308207148 hasRelatedWork W2395560113 @default.
- W2308207148 hasRelatedWork W2512904717 @default.
- W2308207148 hasRelatedWork W2573842569 @default.
- W2308207148 hasRelatedWork W2597085087 @default.
- W2308207148 hasRelatedWork W2610842779 @default.
- W2308207148 hasRelatedWork W2617133001 @default.
- W2308207148 hasRelatedWork W2949984873 @default.
- W2308207148 hasRelatedWork W3027675722 @default.
- W2308207148 hasRelatedWork W3037382045 @default.
- W2308207148 hasRelatedWork W3090849384 @default.
- W2308207148 hasRelatedWork W3160640759 @default.
- W2308207148 hasRelatedWork W3199864175 @default.
- W2308207148 hasRelatedWork W2159319571 @default.
- W2308207148 isParatext "false" @default.
- W2308207148 isRetracted "false" @default.
- W2308207148 magId "2308207148" @default.