Matches in SemOpenAlex for { <https://semopenalex.org/work/W2308288933> ?p ?o ?g. }
- W2308288933 endingPage "125" @default.
- W2308288933 startingPage "116" @default.
- W2308288933 abstract "Old-growth boreal forests display high within-stand structural variation, with large variation in tree sizes and age structure, a heterogeneous horizontal spatial pattern with gaps of different sizes and multi-layered canopies. Old managed forests, on the other hand, are characterized by more homogeneous structural patterns. In many parts of Europe, no true ‘virgin forests’ remains. Still, in many places forests previously influenced by selective logging have been abandoned, and is now developing towards a more natural forest structure. Such near-natural forest areas can be of special importance for forest biodiversity and related ecosystem services, and it is therefore important to map and monitor such forests. Recently, airborne laser scanning (ALS) has been applied to provide ecologically relevant information on forest structure. The advantage of ALS is that it can characterize three-dimensional forest structure in fine detail across broad areas, replacing more labour-intensive field-based measurements. In this study, we use ALS to compare the structural characteristics of 89 near-natural and 280 managed old forest stands in a 17,000 ha boreal forest study site in southeastern Norway. For the study area, both maps of logging history separating old near-natural and old managed forests, and high-resolution ALS data was available. Our aim was to investigate if ALS data could be used to separate vertical and horizontal forest structure in old near natural versus old managed forests. We also wanted to compare different methods for classification, and to describe the potential for use of ALS in classification of forest naturalness for future mapping and monitoring purposes. We found that ALS data had a strong potential in separating stands of old near-natural forests from old managed stands. The most important metrics for classification were those reflecting canopy height, canopy density, variation in canopy height, number of trees per area and gap patterns. This fits well with ecological knowledge of relevant structural differences between forests of different degree of naturalness. Both vertical and horizontal metrics provided useful input to the classification, but the horizontal metrics performed slightly better on accuracy and were easier to interpret. Although the method has a good potential for wider use in boreal forest landscapes, the need for local reference data for calibration as well as the importance of ALS pulse density for precision of classification should be further investigated. Large-scale spatial information on remaining source areas of natural and near-natural forests will be essential in order to manage forests in a way that safeguards biodiversity and ecosystem services. We suggest that classification of forest naturalness based on ALS data can be a helpful tool in future forest mapping and monitoring." @default.
- W2308288933 created "2016-06-24" @default.
- W2308288933 creator A5026055567 @default.
- W2308288933 creator A5034250940 @default.
- W2308288933 creator A5073215366 @default.
- W2308288933 creator A5074132804 @default.
- W2308288933 date "2016-06-01" @default.
- W2308288933 modified "2023-10-02" @default.
- W2308288933 title "Can airborne laser scanning assist in mapping and monitoring natural forests?" @default.
- W2308288933 cites W1678356000 @default.
- W2308288933 cites W1719380898 @default.
- W2308288933 cites W1965974613 @default.
- W2308288933 cites W1970437612 @default.
- W2308288933 cites W1974789528 @default.
- W2308288933 cites W1981632568 @default.
- W2308288933 cites W1985737413 @default.
- W2308288933 cites W1990653740 @default.
- W2308288933 cites W1994585903 @default.
- W2308288933 cites W2001614386 @default.
- W2308288933 cites W2009214675 @default.
- W2308288933 cites W2014392343 @default.
- W2308288933 cites W2025007742 @default.
- W2308288933 cites W2027672019 @default.
- W2308288933 cites W2031419936 @default.
- W2308288933 cites W2032722298 @default.
- W2308288933 cites W2038061832 @default.
- W2308288933 cites W2038224994 @default.
- W2308288933 cites W2039706429 @default.
- W2308288933 cites W2053154970 @default.
- W2308288933 cites W2073768849 @default.
- W2308288933 cites W2075853316 @default.
- W2308288933 cites W2081646612 @default.
- W2308288933 cites W2085520997 @default.
- W2308288933 cites W2086434250 @default.
- W2308288933 cites W2089454337 @default.
- W2308288933 cites W2094434264 @default.
- W2308288933 cites W2097631297 @default.
- W2308288933 cites W2104582654 @default.
- W2308288933 cites W2111759081 @default.
- W2308288933 cites W2120122019 @default.
- W2308288933 cites W2123162799 @default.
- W2308288933 cites W2129464821 @default.
- W2308288933 cites W2132097058 @default.
- W2308288933 cites W2136636747 @default.
- W2308288933 cites W2139086914 @default.
- W2308288933 cites W2140468511 @default.
- W2308288933 cites W2145497555 @default.
- W2308288933 cites W2146236272 @default.
- W2308288933 cites W2150086828 @default.
- W2308288933 cites W2152403299 @default.
- W2308288933 cites W2156350299 @default.
- W2308288933 cites W2161136770 @default.
- W2308288933 cites W2166995952 @default.
- W2308288933 cites W2172902522 @default.
- W2308288933 cites W2177299793 @default.
- W2308288933 cites W2299266285 @default.
- W2308288933 cites W2330275840 @default.
- W2308288933 cites W2911964244 @default.
- W2308288933 doi "https://doi.org/10.1016/j.foreco.2016.03.035" @default.
- W2308288933 hasPublicationYear "2016" @default.
- W2308288933 type Work @default.
- W2308288933 sameAs 2308288933 @default.
- W2308288933 citedByCount "16" @default.
- W2308288933 countsByYear W23082889332017 @default.
- W2308288933 countsByYear W23082889332018 @default.
- W2308288933 countsByYear W23082889332019 @default.
- W2308288933 countsByYear W23082889332021 @default.
- W2308288933 countsByYear W23082889332022 @default.
- W2308288933 countsByYear W23082889332023 @default.
- W2308288933 crossrefType "journal-article" @default.
- W2308288933 hasAuthorship W2308288933A5026055567 @default.
- W2308288933 hasAuthorship W2308288933A5034250940 @default.
- W2308288933 hasAuthorship W2308288933A5073215366 @default.
- W2308288933 hasAuthorship W2308288933A5074132804 @default.
- W2308288933 hasConcept C101000010 @default.
- W2308288933 hasConcept C110872660 @default.
- W2308288933 hasConcept C121560416 @default.
- W2308288933 hasConcept C125620115 @default.
- W2308288933 hasConcept C130217890 @default.
- W2308288933 hasConcept C133382796 @default.
- W2308288933 hasConcept C166957645 @default.
- W2308288933 hasConcept C185933670 @default.
- W2308288933 hasConcept C18903297 @default.
- W2308288933 hasConcept C192158950 @default.
- W2308288933 hasConcept C205649164 @default.
- W2308288933 hasConcept C2776608160 @default.
- W2308288933 hasConcept C28631016 @default.
- W2308288933 hasConcept C2983469836 @default.
- W2308288933 hasConcept C39432304 @default.
- W2308288933 hasConcept C54286561 @default.
- W2308288933 hasConcept C73935091 @default.
- W2308288933 hasConcept C86803240 @default.
- W2308288933 hasConcept C87621631 @default.
- W2308288933 hasConcept C92494378 @default.
- W2308288933 hasConcept C97137747 @default.
- W2308288933 hasConceptScore W2308288933C101000010 @default.
- W2308288933 hasConceptScore W2308288933C110872660 @default.
- W2308288933 hasConceptScore W2308288933C121560416 @default.