Matches in SemOpenAlex for { <https://semopenalex.org/work/W2308671710> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2308671710 endingPage "90" @default.
- W2308671710 startingPage "83" @default.
- W2308671710 abstract "The increasing consumption of electricity in Iran is one of the greatest concerns of the government. Using the subsidy-based pricing system is one of the main reasons of improper pattern of residential electricity consumption that has imposed great cost over the government due to the increased number of consumers and their improper way of consuming electricity. In this paper, we analyze the factors that affect residential electricity demand using artificial neural network (ANN) and predict the amount of electricity consumption in 2006 (the end of the year in which subsides are being removed) by definition of five different price scenarios.The per-capita residential electricity consumption is considered as a dependent variable of the model .Electricity price, GDP per capita, macroeconomic fluctuations and a variable representing weather temperatures are used as explanatory factors.The proposed model has a good explaining capability (R=0.996) and with predicting independent variables up to 2016, the dependent variable were predicted using procedures like time series and ARIMA. The achieved results show that the price factors have limited role in defining the pattern of residential electricity consumption. So small changes in electricity price will not reduce the electricity consumption and committing scenarios with gradual changes in price will not lead to the reduction of electricity consumption. Therefore, it is necessary for the government to commit scenarios with significant increase of prices in order to correct the pattern of residential electricity consumption; otherwise, the electricity demand will increase uncontrollably due to the increasing population and consumption." @default.
- W2308671710 created "2016-06-24" @default.
- W2308671710 creator A5037493019 @default.
- W2308671710 creator A5043011613 @default.
- W2308671710 date "2014-08-23" @default.
- W2308671710 modified "2023-09-24" @default.
- W2308671710 title "Forecasting Effects of Scenarios of Subsides Removal on Residential Electricity Consumption by Artificial Neural Networks" @default.
- W2308671710 doi "https://doi.org/10.22059/jieng.2014.51787" @default.
- W2308671710 hasPublicationYear "2014" @default.
- W2308671710 type Work @default.
- W2308671710 sameAs 2308671710 @default.
- W2308671710 citedByCount "0" @default.
- W2308671710 crossrefType "journal-article" @default.
- W2308671710 hasAuthorship W2308671710A5037493019 @default.
- W2308671710 hasAuthorship W2308671710A5043011613 @default.
- W2308671710 hasConcept C119599485 @default.
- W2308671710 hasConcept C127413603 @default.
- W2308671710 hasConcept C127598652 @default.
- W2308671710 hasConcept C134306372 @default.
- W2308671710 hasConcept C134560507 @default.
- W2308671710 hasConcept C144024400 @default.
- W2308671710 hasConcept C146733006 @default.
- W2308671710 hasConcept C149782125 @default.
- W2308671710 hasConcept C149923435 @default.
- W2308671710 hasConcept C162324750 @default.
- W2308671710 hasConcept C175444787 @default.
- W2308671710 hasConcept C182365436 @default.
- W2308671710 hasConcept C206658404 @default.
- W2308671710 hasConcept C2908647359 @default.
- W2308671710 hasConcept C30772137 @default.
- W2308671710 hasConcept C33923547 @default.
- W2308671710 hasConcept C36289849 @default.
- W2308671710 hasConcept C48824518 @default.
- W2308671710 hasConceptScore W2308671710C119599485 @default.
- W2308671710 hasConceptScore W2308671710C127413603 @default.
- W2308671710 hasConceptScore W2308671710C127598652 @default.
- W2308671710 hasConceptScore W2308671710C134306372 @default.
- W2308671710 hasConceptScore W2308671710C134560507 @default.
- W2308671710 hasConceptScore W2308671710C144024400 @default.
- W2308671710 hasConceptScore W2308671710C146733006 @default.
- W2308671710 hasConceptScore W2308671710C149782125 @default.
- W2308671710 hasConceptScore W2308671710C149923435 @default.
- W2308671710 hasConceptScore W2308671710C162324750 @default.
- W2308671710 hasConceptScore W2308671710C175444787 @default.
- W2308671710 hasConceptScore W2308671710C182365436 @default.
- W2308671710 hasConceptScore W2308671710C206658404 @default.
- W2308671710 hasConceptScore W2308671710C2908647359 @default.
- W2308671710 hasConceptScore W2308671710C30772137 @default.
- W2308671710 hasConceptScore W2308671710C33923547 @default.
- W2308671710 hasConceptScore W2308671710C36289849 @default.
- W2308671710 hasConceptScore W2308671710C48824518 @default.
- W2308671710 hasLocation W23086717101 @default.
- W2308671710 hasOpenAccess W2308671710 @default.
- W2308671710 hasPrimaryLocation W23086717101 @default.
- W2308671710 hasRelatedWork W100302056 @default.
- W2308671710 hasRelatedWork W1965748123 @default.
- W2308671710 hasRelatedWork W1981258814 @default.
- W2308671710 hasRelatedWork W2013789642 @default.
- W2308671710 hasRelatedWork W2022739317 @default.
- W2308671710 hasRelatedWork W2038242348 @default.
- W2308671710 hasRelatedWork W2181574536 @default.
- W2308671710 hasRelatedWork W2183243975 @default.
- W2308671710 hasRelatedWork W2198386013 @default.
- W2308671710 hasRelatedWork W2268396902 @default.
- W2308671710 hasRelatedWork W2353862712 @default.
- W2308671710 hasRelatedWork W2380495596 @default.
- W2308671710 hasRelatedWork W2389721436 @default.
- W2308671710 hasRelatedWork W2807665197 @default.
- W2308671710 hasRelatedWork W2903696354 @default.
- W2308671710 hasRelatedWork W2981543363 @default.
- W2308671710 hasRelatedWork W2986441659 @default.
- W2308671710 hasRelatedWork W3014142840 @default.
- W2308671710 hasRelatedWork W2815759343 @default.
- W2308671710 hasRelatedWork W2858713584 @default.
- W2308671710 hasVolume "48" @default.
- W2308671710 isParatext "false" @default.
- W2308671710 isRetracted "false" @default.
- W2308671710 magId "2308671710" @default.
- W2308671710 workType "article" @default.