Matches in SemOpenAlex for { <https://semopenalex.org/work/W2308688139> ?p ?o ?g. }
- W2308688139 endingPage "1776" @default.
- W2308688139 startingPage "1764" @default.
- W2308688139 abstract "The objective of this study is to measure through simulation the impact of (1) heterogeneity of biophysical parameters in tumor vs healthy tissue, (2) applicator placement relative to the tumor, and (3) proximity to large blood vessels on microwave ablation (MWA) treatment effect area. This will help identify the biophysical properties that have the greatest impact on improving clinical modeling of MWA procedures.The authors' approach was to develop two-compartment models with variable tissue properties and simulate MWA procedures performed in liver with Perseon Medical's 915 MHz short-tip applicator. Input parameters for the dielectric and thermal properties considered in this study were based on measurements for healthy and malignant (primary or metastatic) liver tissue previously reported in the literature. Compartment 1 (C1) represented normal, fatty, or cirrhotic liver, and compartment 2 (C2) represented a primary hepatocellular carcinoma tumor sample embedded within C1. To evaluate the sensitivity to tissue parameters, a range of clinically relevant tissue properties were simulated. To evaluate the impact of MWA antenna position, the authors simulated various tumor perfusion models with the antenna shifted 5 mm anteriorly and posteriorly. To evaluate the effect of local vasculature, the authors simulated an additional heat sink of various diameters and distances from the tumor. Dice coefficient statistics were used to evaluate ablation zone effects from these local heat sinks.Models showed less than 11% of volume variability (1 cm(3) increase) in ablation treatment effect region when accounting for the difference in relative permittivity and electrical conductivity between malignant and healthy liver tissue. There was a 27% increase in volume when simulating thermal conductivity of fatty liver disease versus the baseline simulation. The ablation zone volume increased more than 36% when simulating cirrhotic surrounding liver tissue. Antenna placement relative to the tumor had minimal sensitivity to the absolute size of the treatment effect area, with less than 1.5 mm variation. However, when considering the overlap between the ablation zone and the ideal clinical margin when the antenna was displaced 5 mm anteriorly and posteriorly, there was approximately a 6 mm difference in the margins. Dice coefficient statistics showed as much as an 11% decrease in the ablation margin due to the presence of vessel heat sinks within the model.The results from simulating the variance in malignant tissue thermal and electrical properties will help guide better approximations for MWA treatments. The results suggest that assuming malignant and healthy liver tissues have similar dielectric properties is a reasonable first approximation. Antenna placement relative to the tumor has minimal impact on the absolute size of the ablation zone, yet it does cause relevant variation between desired treatment margin and ablation zone. Blood vessel cooling, especially hepatic vessels close to the region of interest, may be a significant factor to consider in treatment planning. Further data need to be collected for assessing treatment planning utility of modeling MWA in this context." @default.
- W2308688139 created "2016-06-24" @default.
- W2308688139 creator A5019725857 @default.
- W2308688139 creator A5032647737 @default.
- W2308688139 creator A5040175409 @default.
- W2308688139 creator A5047707789 @default.
- W2308688139 creator A5066323111 @default.
- W2308688139 date "2016-03-22" @default.
- W2308688139 modified "2023-10-09" @default.
- W2308688139 title "Physical modeling of microwave ablation zone clinical margin variance" @default.
- W2308688139 cites W1597042664 @default.
- W2308688139 cites W1756484090 @default.
- W2308688139 cites W1890818041 @default.
- W2308688139 cites W1923695921 @default.
- W2308688139 cites W1963954390 @default.
- W2308688139 cites W1967112331 @default.
- W2308688139 cites W1972549429 @default.
- W2308688139 cites W1976522396 @default.
- W2308688139 cites W1978384608 @default.
- W2308688139 cites W1979880526 @default.
- W2308688139 cites W1980475891 @default.
- W2308688139 cites W1984691930 @default.
- W2308688139 cites W1986250344 @default.
- W2308688139 cites W1991625282 @default.
- W2308688139 cites W1995481447 @default.
- W2308688139 cites W1997530857 @default.
- W2308688139 cites W2010846735 @default.
- W2308688139 cites W2017541790 @default.
- W2308688139 cites W2019419102 @default.
- W2308688139 cites W2024097067 @default.
- W2308688139 cites W2025470654 @default.
- W2308688139 cites W2026250823 @default.
- W2308688139 cites W2029341128 @default.
- W2308688139 cites W2035984559 @default.
- W2308688139 cites W2039553081 @default.
- W2308688139 cites W2042669918 @default.
- W2308688139 cites W2043154105 @default.
- W2308688139 cites W2050741505 @default.
- W2308688139 cites W2055372542 @default.
- W2308688139 cites W2056755512 @default.
- W2308688139 cites W2058143404 @default.
- W2308688139 cites W2059117955 @default.
- W2308688139 cites W2061588198 @default.
- W2308688139 cites W2071106948 @default.
- W2308688139 cites W2087764437 @default.
- W2308688139 cites W2097508883 @default.
- W2308688139 cites W2105308790 @default.
- W2308688139 cites W2106299017 @default.
- W2308688139 cites W2112262063 @default.
- W2308688139 cites W2112800977 @default.
- W2308688139 cites W2114507297 @default.
- W2308688139 cites W2116232679 @default.
- W2308688139 cites W2123911739 @default.
- W2308688139 cites W2133285837 @default.
- W2308688139 cites W2136177402 @default.
- W2308688139 cites W2140907979 @default.
- W2308688139 cites W2141899385 @default.
- W2308688139 cites W2150300426 @default.
- W2308688139 cites W2152947952 @default.
- W2308688139 cites W2153700824 @default.
- W2308688139 cites W2155763772 @default.
- W2308688139 cites W2160496476 @default.
- W2308688139 cites W2163142220 @default.
- W2308688139 cites W4210988141 @default.
- W2308688139 doi "https://doi.org/10.1118/1.4942980" @default.
- W2308688139 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27036574" @default.
- W2308688139 hasPublicationYear "2016" @default.
- W2308688139 type Work @default.
- W2308688139 sameAs 2308688139 @default.
- W2308688139 citedByCount "35" @default.
- W2308688139 countsByYear W23086881392016 @default.
- W2308688139 countsByYear W23086881392017 @default.
- W2308688139 countsByYear W23086881392018 @default.
- W2308688139 countsByYear W23086881392019 @default.
- W2308688139 countsByYear W23086881392020 @default.
- W2308688139 countsByYear W23086881392021 @default.
- W2308688139 countsByYear W23086881392022 @default.
- W2308688139 countsByYear W23086881392023 @default.
- W2308688139 crossrefType "journal-article" @default.
- W2308688139 hasAuthorship W2308688139A5019725857 @default.
- W2308688139 hasAuthorship W2308688139A5032647737 @default.
- W2308688139 hasAuthorship W2308688139A5040175409 @default.
- W2308688139 hasAuthorship W2308688139A5047707789 @default.
- W2308688139 hasAuthorship W2308688139A5066323111 @default.
- W2308688139 hasConcept C111368507 @default.
- W2308688139 hasConcept C126322002 @default.
- W2308688139 hasConcept C127313418 @default.
- W2308688139 hasConcept C136229726 @default.
- W2308688139 hasConcept C192562407 @default.
- W2308688139 hasConcept C203635412 @default.
- W2308688139 hasConcept C2778014663 @default.
- W2308688139 hasConcept C2778019345 @default.
- W2308688139 hasConcept C2778902805 @default.
- W2308688139 hasConcept C2989005 @default.
- W2308688139 hasConcept C502942594 @default.
- W2308688139 hasConcept C71924100 @default.
- W2308688139 hasConcept C76856502 @default.
- W2308688139 hasConceptScore W2308688139C111368507 @default.