Matches in SemOpenAlex for { <https://semopenalex.org/work/W2309452438> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2309452438 abstract "This thesis examines the use of quantile methods to better estimate the time-varying conditional asset return distribution. The motivation for this is to contribute to improvements in the time series forecasting by taking into account some features of financial returns. We first consider a single quantile model with a long memory component in order to estimate the Value at Risk (VaR). We find that the model provides us with improved estimates and forecasts, and has valuable economic interpretation for the firm’s capital allocation. We also present improvements in the economic performance of existing models through the use of past aggregate return information in VaR estimation. Additionally, we attempt to make a contribution by examining some of the empirical properties of quantile models, such as the types of issues that arise in their estimation. A limitation of quantile models of this type is the lack of monotonicity in the estimation of conditional quantile functions. Thus, there is a need for a model that considers the correct quantile ordering. In addition, there is still a need for more accurate forecasts that may be of practical use for various financial applications. We speculate that this can be done by decomposing the conditional distribution in a natural way into its shape and scale dynamics. Motivated by these, we extend the single quantile model to incorporate more than one probability levels and the dynamic of the scale. We find that by accounting for the scale, we are able to explain the time-varying patterns between the individual quantiles. Apart from being able to address the monotonicity of quantile functions, this setting offers valuable information for the conditional distribution of returns. We are able to study the dynamics of the scale and shape over time separately and obtain satisfactory VaR forecasts. We deliver estimates for this model in a frequentist and a Bayesian framework. The latter is able to deliver more robust estimates than the classical approach. Bayesian inference is motivated by the estimation issues that we identify in both the single and the multiple quantile settings. In particular, we find that the Bayesian methodology is useful for addressing the multi-modality of the objective function and estimating the uncertainty of the model parameters." @default.
- W2309452438 created "2016-06-24" @default.
- W2309452438 creator A5031446388 @default.
- W2309452438 date "2015-07-01" @default.
- W2309452438 modified "2023-09-23" @default.
- W2309452438 title "Essays on the modelling of quantiles for forecasting and risk estimation" @default.
- W2309452438 hasPublicationYear "2015" @default.
- W2309452438 type Work @default.
- W2309452438 sameAs 2309452438 @default.
- W2309452438 citedByCount "0" @default.
- W2309452438 crossrefType "dissertation" @default.
- W2309452438 hasAuthorship W2309452438A5031446388 @default.
- W2309452438 hasConcept C10138342 @default.
- W2309452438 hasConcept C118671147 @default.
- W2309452438 hasConcept C149782125 @default.
- W2309452438 hasConcept C162324750 @default.
- W2309452438 hasConcept C187736073 @default.
- W2309452438 hasConcept C32896092 @default.
- W2309452438 hasConcept C38652104 @default.
- W2309452438 hasConcept C41008148 @default.
- W2309452438 hasConcept C43555835 @default.
- W2309452438 hasConcept C63817138 @default.
- W2309452438 hasConcept C76178495 @default.
- W2309452438 hasConcept C94128290 @default.
- W2309452438 hasConcept C96250715 @default.
- W2309452438 hasConceptScore W2309452438C10138342 @default.
- W2309452438 hasConceptScore W2309452438C118671147 @default.
- W2309452438 hasConceptScore W2309452438C149782125 @default.
- W2309452438 hasConceptScore W2309452438C162324750 @default.
- W2309452438 hasConceptScore W2309452438C187736073 @default.
- W2309452438 hasConceptScore W2309452438C32896092 @default.
- W2309452438 hasConceptScore W2309452438C38652104 @default.
- W2309452438 hasConceptScore W2309452438C41008148 @default.
- W2309452438 hasConceptScore W2309452438C43555835 @default.
- W2309452438 hasConceptScore W2309452438C63817138 @default.
- W2309452438 hasConceptScore W2309452438C76178495 @default.
- W2309452438 hasConceptScore W2309452438C94128290 @default.
- W2309452438 hasConceptScore W2309452438C96250715 @default.
- W2309452438 hasLocation W23094524381 @default.
- W2309452438 hasOpenAccess W2309452438 @default.
- W2309452438 hasPrimaryLocation W23094524381 @default.
- W2309452438 hasRelatedWork W1528001877 @default.
- W2309452438 hasRelatedWork W1655284544 @default.
- W2309452438 hasRelatedWork W2013092741 @default.
- W2309452438 hasRelatedWork W2135150595 @default.
- W2309452438 hasRelatedWork W2265892941 @default.
- W2309452438 hasRelatedWork W2277381640 @default.
- W2309452438 hasRelatedWork W2412455845 @default.
- W2309452438 hasRelatedWork W2554853555 @default.
- W2309452438 hasRelatedWork W2771860089 @default.
- W2309452438 hasRelatedWork W2935767215 @default.
- W2309452438 hasRelatedWork W3038970853 @default.
- W2309452438 hasRelatedWork W3044800516 @default.
- W2309452438 hasRelatedWork W3122135342 @default.
- W2309452438 hasRelatedWork W3124065963 @default.
- W2309452438 hasRelatedWork W3125571267 @default.
- W2309452438 hasRelatedWork W3126594918 @default.
- W2309452438 hasRelatedWork W3130380813 @default.
- W2309452438 hasRelatedWork W3147011797 @default.
- W2309452438 hasRelatedWork W367905847 @default.
- W2309452438 hasRelatedWork W1915694674 @default.
- W2309452438 isParatext "false" @default.
- W2309452438 isRetracted "false" @default.
- W2309452438 magId "2309452438" @default.
- W2309452438 workType "dissertation" @default.