Matches in SemOpenAlex for { <https://semopenalex.org/work/W2309579632> ?p ?o ?g. }
- W2309579632 abstract "Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observations of a ‘rusty carbon sink’ in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and are therefore difficult to study with standard mineralogical tools. Sequential extraction techniques are commonly used as proxies. We provide an example where Mössbauer spectroscopy can replace sequential extraction techniques where mineralogical information is sought. Where mineral separation is needed, for example in the investigation of Fe or S isotope fractionation, Mössbauer spectroscopy can help to optimize sequential extraction procedures. This can be employed in a large number of investigations of soils and sediments, potentially even for mineral separation to study Fe and S isotope fractionation in samples returned from Mars, which might reveal signatures of biological activity. When looking for the possibility of life outside Earth, Jupiter’s icy moon Europa is one of the most exciting places. It may be just in reach for a Mössbauer spectrometer deployed by a future lander to study the red streak mineral deposits on its surface to look for clues about the composition of the ocean hidden under the moon’s icy surface." @default.
- W2309579632 created "2016-06-24" @default.
- W2309579632 creator A5021205216 @default.
- W2309579632 creator A5028546149 @default.
- W2309579632 creator A5036580884 @default.
- W2309579632 creator A5063059789 @default.
- W2309579632 creator A5066752579 @default.
- W2309579632 creator A5077218078 @default.
- W2309579632 creator A5084156075 @default.
- W2309579632 date "2016-03-21" @default.
- W2309579632 modified "2023-10-04" @default.
- W2309579632 title "The biogeochemical iron cycle and astrobiology" @default.
- W2309579632 cites W129983913 @default.
- W2309579632 cites W1506354302 @default.
- W2309579632 cites W1604783612 @default.
- W2309579632 cites W1605218732 @default.
- W2309579632 cites W1969079562 @default.
- W2309579632 cites W1970418159 @default.
- W2309579632 cites W1977372989 @default.
- W2309579632 cites W1985693800 @default.
- W2309579632 cites W1993013648 @default.
- W2309579632 cites W2002398481 @default.
- W2309579632 cites W2006233420 @default.
- W2309579632 cites W2007443159 @default.
- W2309579632 cites W2026255826 @default.
- W2309579632 cites W2035708421 @default.
- W2309579632 cites W2036677156 @default.
- W2309579632 cites W2036858336 @default.
- W2309579632 cites W2042372974 @default.
- W2309579632 cites W2050544236 @default.
- W2309579632 cites W2051887704 @default.
- W2309579632 cites W2052339271 @default.
- W2309579632 cites W2052393515 @default.
- W2309579632 cites W2054921843 @default.
- W2309579632 cites W2069391178 @default.
- W2309579632 cites W2069932607 @default.
- W2309579632 cites W2078173875 @default.
- W2309579632 cites W2085163135 @default.
- W2309579632 cites W2087743499 @default.
- W2309579632 cites W2095814622 @default.
- W2309579632 cites W2096777861 @default.
- W2309579632 cites W2098392305 @default.
- W2309579632 cites W2100227852 @default.
- W2309579632 cites W2103811807 @default.
- W2309579632 cites W2111794471 @default.
- W2309579632 cites W2119530052 @default.
- W2309579632 cites W2143625007 @default.
- W2309579632 cites W2148585617 @default.
- W2309579632 cites W2151171163 @default.
- W2309579632 cites W2152295257 @default.
- W2309579632 cites W2155021855 @default.
- W2309579632 cites W2159473523 @default.
- W2309579632 cites W2161582133 @default.
- W2309579632 cites W2167947842 @default.
- W2309579632 cites W2168396934 @default.
- W2309579632 cites W2318631117 @default.
- W2309579632 cites W3022366071 @default.
- W2309579632 cites W4210991372 @default.
- W2309579632 doi "https://doi.org/10.1007/s10751-016-1289-2" @default.
- W2309579632 hasPublicationYear "2016" @default.
- W2309579632 type Work @default.
- W2309579632 sameAs 2309579632 @default.
- W2309579632 citedByCount "10" @default.
- W2309579632 countsByYear W23095796322018 @default.
- W2309579632 countsByYear W23095796322019 @default.
- W2309579632 countsByYear W23095796322020 @default.
- W2309579632 countsByYear W23095796322021 @default.
- W2309579632 countsByYear W23095796322023 @default.
- W2309579632 crossrefType "journal-article" @default.
- W2309579632 hasAuthorship W2309579632A5021205216 @default.
- W2309579632 hasAuthorship W2309579632A5028546149 @default.
- W2309579632 hasAuthorship W2309579632A5036580884 @default.
- W2309579632 hasAuthorship W2309579632A5063059789 @default.
- W2309579632 hasAuthorship W2309579632A5066752579 @default.
- W2309579632 hasAuthorship W2309579632A5077218078 @default.
- W2309579632 hasAuthorship W2309579632A5084156075 @default.
- W2309579632 hasBestOaLocation W23095796321 @default.
- W2309579632 hasConcept C107872376 @default.
- W2309579632 hasConcept C110872660 @default.
- W2309579632 hasConcept C121332964 @default.
- W2309579632 hasConcept C127313418 @default.
- W2309579632 hasConcept C130309983 @default.
- W2309579632 hasConcept C130452526 @default.
- W2309579632 hasConcept C17409809 @default.
- W2309579632 hasConcept C178790620 @default.
- W2309579632 hasConcept C185592680 @default.
- W2309579632 hasConcept C18903297 @default.
- W2309579632 hasConcept C1965285 @default.
- W2309579632 hasConcept C199289684 @default.
- W2309579632 hasConcept C24245907 @default.
- W2309579632 hasConcept C2775832776 @default.
- W2309579632 hasConcept C2776744078 @default.
- W2309579632 hasConcept C48743137 @default.
- W2309579632 hasConcept C6939412 @default.
- W2309579632 hasConcept C71915725 @default.
- W2309579632 hasConcept C86803240 @default.
- W2309579632 hasConcept C87355193 @default.
- W2309579632 hasConceptScore W2309579632C107872376 @default.
- W2309579632 hasConceptScore W2309579632C110872660 @default.
- W2309579632 hasConceptScore W2309579632C121332964 @default.