Matches in SemOpenAlex for { <https://semopenalex.org/work/W2310362673> ?p ?o ?g. }
- W2310362673 abstract "SUNGKYU JUNG: Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds. (Under the direction of Dr. J. S. Marron.) The dissertation consists of two research topics regarding modern non-standard data analytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS) situation and data lying on manifolds are analyzed. These situations are related to the statistical image and shape analysis. The first topic is an asymptotic study of the high dimensional covariance matrix. In particular, the behavior of eigenvalues and eigenvectors of the covariance matrix is analyzed, which is closely related to the method of Principal Component Analysis (PCA). The asymptotic behavior of the Principal Component (PC) directions, when the dimension tends to infinity with the sample size fixed, is investigated. We have found mathematical conditions which characterize the consistency and the strong inconsistency of the empirical PC direction vectors. Moreover, the conditions where the empirical PC direction vectors are neither consistent nor strongly inconsistent are revealed, and the limiting distributions of the angle formed by the empirical PC direction and the population counterpart are presented. These findings help to understand the use of PCA in the HDLSS context, which is justified when the conditions for the consistency occur. The second part of the dissertation studies data analysis methods for data lying in curved manifolds that are the features from shapes or images. A common goal in statistical shape analysis is to understand variation of shapes. As a means of dimension reduction and visualization, there is a need to develop PCA-like methods for manifold data. We propose flexible extensions of PCA to manifold data: Principal Arc Analysis and Analysis of Principal Nested Spheres. The methods are implemented to two important types of manifolds. The sample space of the medial representation of shapes, frequently used in image analysis to parameterize the shape of human organs, naturally forms curved manifolds, which we characterize as direct product manifolds. Another type of manifolds we consider is the landmark-based" @default.
- W2310362673 created "2016-06-24" @default.
- W2310362673 creator A5018954610 @default.
- W2310362673 date "2011-05-01" @default.
- W2310362673 modified "2023-09-27" @default.
- W2310362673 title "Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds" @default.
- W2310362673 cites W101730385 @default.
- W2310362673 cites W117531481 @default.
- W2310362673 cites W1263822970 @default.
- W2310362673 cites W13416542 @default.
- W2310362673 cites W1511681359 @default.
- W2310362673 cites W1520752838 @default.
- W2310362673 cites W1563961677 @default.
- W2310362673 cites W1586233811 @default.
- W2310362673 cites W1745126362 @default.
- W2310362673 cites W1949248870 @default.
- W2310362673 cites W1964802316 @default.
- W2310362673 cites W1966521860 @default.
- W2310362673 cites W1977687650 @default.
- W2310362673 cites W1983410620 @default.
- W2310362673 cites W1983496390 @default.
- W2310362673 cites W1983894121 @default.
- W2310362673 cites W1988105503 @default.
- W2310362673 cites W1991767154 @default.
- W2310362673 cites W1998894275 @default.
- W2310362673 cites W2001133651 @default.
- W2310362673 cites W2003064123 @default.
- W2310362673 cites W2006025735 @default.
- W2310362673 cites W2006302620 @default.
- W2310362673 cites W2007527993 @default.
- W2310362673 cites W2011058684 @default.
- W2310362673 cites W2011861880 @default.
- W2310362673 cites W2013737143 @default.
- W2310362673 cites W2017587562 @default.
- W2310362673 cites W2018158023 @default.
- W2310362673 cites W2019810671 @default.
- W2310362673 cites W2024795872 @default.
- W2310362673 cites W2026786624 @default.
- W2310362673 cites W2026892575 @default.
- W2310362673 cites W2036248065 @default.
- W2310362673 cites W2037590905 @default.
- W2310362673 cites W2040125300 @default.
- W2310362673 cites W2043735487 @default.
- W2310362673 cites W2044196246 @default.
- W2310362673 cites W2047165046 @default.
- W2310362673 cites W2059640215 @default.
- W2310362673 cites W2061700871 @default.
- W2310362673 cites W2062486795 @default.
- W2310362673 cites W2064061501 @default.
- W2310362673 cites W2066459155 @default.
- W2310362673 cites W2070779353 @default.
- W2310362673 cites W2071128523 @default.
- W2310362673 cites W2072931016 @default.
- W2310362673 cites W2077445896 @default.
- W2310362673 cites W2079094721 @default.
- W2310362673 cites W2082939309 @default.
- W2310362673 cites W2086013789 @default.
- W2310362673 cites W2086258274 @default.
- W2310362673 cites W2090934631 @default.
- W2310362673 cites W2091804476 @default.
- W2310362673 cites W2093897717 @default.
- W2310362673 cites W2095800081 @default.
- W2310362673 cites W2097413644 @default.
- W2310362673 cites W2100967164 @default.
- W2310362673 cites W2106084579 @default.
- W2310362673 cites W2109409043 @default.
- W2310362673 cites W2114177890 @default.
- W2310362673 cites W2118130528 @default.
- W2310362673 cites W2118250684 @default.
- W2310362673 cites W2118800758 @default.
- W2310362673 cites W2120350343 @default.
- W2310362673 cites W2121014637 @default.
- W2310362673 cites W2121847472 @default.
- W2310362673 cites W2125949583 @default.
- W2310362673 cites W2128325826 @default.
- W2310362673 cites W2140095548 @default.
- W2310362673 cites W2140286913 @default.
- W2310362673 cites W2145001205 @default.
- W2310362673 cites W2145526951 @default.
- W2310362673 cites W2146932984 @default.
- W2310362673 cites W2148694408 @default.
- W2310362673 cites W2149566602 @default.
- W2310362673 cites W2150719798 @default.
- W2310362673 cites W2151396483 @default.
- W2310362673 cites W2152826766 @default.
- W2310362673 cites W2156909104 @default.
- W2310362673 cites W2157169955 @default.
- W2310362673 cites W2160950563 @default.
- W2310362673 cites W2165168736 @default.
- W2310362673 cites W2168338244 @default.
- W2310362673 cites W2169103656 @default.
- W2310362673 cites W2184041750 @default.
- W2310362673 cites W2286049557 @default.
- W2310362673 cites W2403035479 @default.
- W2310362673 cites W2518997566 @default.
- W2310362673 cites W2577995889 @default.
- W2310362673 cites W2599231066 @default.
- W2310362673 cites W2796930440 @default.
- W2310362673 cites W2797819118 @default.
- W2310362673 cites W2963432779 @default.