Matches in SemOpenAlex for { <https://semopenalex.org/work/W2310704617> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2310704617 abstract "An information retrieval (IR) system (IRs) (search engine) is said to be efficient, to the degree that always evaluates each object in the information base (database, document base, web,...) like the expert. The ability of IRs's is to retrieve mostly all relevant objects (measured by the recall), and only the (most) relevant objects (measured by the precision) from the collection queried.Recall and precision measures provide the classical measure of the retrieval efficiency. They measure the degree to which the query answer (the set of documents that retrieved by IRs as response to the user query). Where, the query answer is the set of relevant documents in the information based queried.Retrieving most relevant documents to the user query in IRs was one of the most important methods of World Wide Web (WWW) search engines used in the world now. So the searchers aim to use genetic programming (GP) and fuzzy optimization to optimize the user search query in the Boolean IRs model and in the fuzzy IRs model; and to use more Boolean operators (AND, OR, XOR, OF, and NOT) instead of using the standard operators (AND, OR, and NOT), and to use weights for terms and for Boolean operators. Weights are used to give the users more relaxation in defining how much the importance of the terms and of the Boolean operators is. The terms and the Boolean operators' weights are used in fuzzy IRs model. In addition, it investigates extensions of the classical measurement of effectiveness in IRs, precision; recall and harmonic mean.The researchers use harmonic mean measure as an objective function which uses both measures precision and recall at once for evaluating the results of the two IRs models to grow up the precision-recall relationship curve." @default.
- W2310704617 created "2016-06-24" @default.
- W2310704617 creator A5011543714 @default.
- W2310704617 creator A5052196435 @default.
- W2310704617 creator A5088934266 @default.
- W2310704617 date "2007-01-01" @default.
- W2310704617 modified "2023-09-24" @default.
- W2310704617 title "Grow up precision recall relationship curve in IR system using GP and fuzzy optimization in optimizing the user query" @default.
- W2310704617 hasPublicationYear "2007" @default.
- W2310704617 type Work @default.
- W2310704617 sameAs 2310704617 @default.
- W2310704617 citedByCount "0" @default.
- W2310704617 crossrefType "journal-article" @default.
- W2310704617 hasAuthorship W2310704617A5011543714 @default.
- W2310704617 hasAuthorship W2310704617A5052196435 @default.
- W2310704617 hasAuthorship W2310704617A5088934266 @default.
- W2310704617 hasConcept C118689300 @default.
- W2310704617 hasConcept C124101348 @default.
- W2310704617 hasConcept C154945302 @default.
- W2310704617 hasConcept C157692150 @default.
- W2310704617 hasConcept C164120249 @default.
- W2310704617 hasConcept C177264268 @default.
- W2310704617 hasConcept C189430467 @default.
- W2310704617 hasConcept C192028432 @default.
- W2310704617 hasConcept C192939062 @default.
- W2310704617 hasConcept C199360897 @default.
- W2310704617 hasConcept C23123220 @default.
- W2310704617 hasConcept C24755975 @default.
- W2310704617 hasConcept C41008148 @default.
- W2310704617 hasConcept C4969071 @default.
- W2310704617 hasConcept C58166 @default.
- W2310704617 hasConcept C81669768 @default.
- W2310704617 hasConcept C97854310 @default.
- W2310704617 hasConcept C99016210 @default.
- W2310704617 hasConceptScore W2310704617C118689300 @default.
- W2310704617 hasConceptScore W2310704617C124101348 @default.
- W2310704617 hasConceptScore W2310704617C154945302 @default.
- W2310704617 hasConceptScore W2310704617C157692150 @default.
- W2310704617 hasConceptScore W2310704617C164120249 @default.
- W2310704617 hasConceptScore W2310704617C177264268 @default.
- W2310704617 hasConceptScore W2310704617C189430467 @default.
- W2310704617 hasConceptScore W2310704617C192028432 @default.
- W2310704617 hasConceptScore W2310704617C192939062 @default.
- W2310704617 hasConceptScore W2310704617C199360897 @default.
- W2310704617 hasConceptScore W2310704617C23123220 @default.
- W2310704617 hasConceptScore W2310704617C24755975 @default.
- W2310704617 hasConceptScore W2310704617C41008148 @default.
- W2310704617 hasConceptScore W2310704617C4969071 @default.
- W2310704617 hasConceptScore W2310704617C58166 @default.
- W2310704617 hasConceptScore W2310704617C81669768 @default.
- W2310704617 hasConceptScore W2310704617C97854310 @default.
- W2310704617 hasConceptScore W2310704617C99016210 @default.
- W2310704617 hasLocation W23107046171 @default.
- W2310704617 hasOpenAccess W2310704617 @default.
- W2310704617 hasPrimaryLocation W23107046171 @default.
- W2310704617 hasRelatedWork W121117830 @default.
- W2310704617 hasRelatedWork W1493557918 @default.
- W2310704617 hasRelatedWork W1522721599 @default.
- W2310704617 hasRelatedWork W1541513621 @default.
- W2310704617 hasRelatedWork W1547044132 @default.
- W2310704617 hasRelatedWork W1554448863 @default.
- W2310704617 hasRelatedWork W1928358804 @default.
- W2310704617 hasRelatedWork W1986746529 @default.
- W2310704617 hasRelatedWork W2020919487 @default.
- W2310704617 hasRelatedWork W2028105135 @default.
- W2310704617 hasRelatedWork W2064314490 @default.
- W2310704617 hasRelatedWork W2068632118 @default.
- W2310704617 hasRelatedWork W2154610494 @default.
- W2310704617 hasRelatedWork W2171621982 @default.
- W2310704617 hasRelatedWork W2348242738 @default.
- W2310704617 hasRelatedWork W2379221856 @default.
- W2310704617 hasRelatedWork W2414550872 @default.
- W2310704617 hasRelatedWork W2517620127 @default.
- W2310704617 hasRelatedWork W2612005477 @default.
- W2310704617 hasRelatedWork W2955854020 @default.
- W2310704617 isParatext "false" @default.
- W2310704617 isRetracted "false" @default.
- W2310704617 magId "2310704617" @default.
- W2310704617 workType "article" @default.