Matches in SemOpenAlex for { <https://semopenalex.org/work/W2312203001> ?p ?o ?g. }
- W2312203001 endingPage "901" @default.
- W2312203001 startingPage "860" @default.
- W2312203001 abstract "Feature selection is an important step in building accurate classifiers and provides better understanding of the data sets. In this paper, we propose a feature subset selection method based on high-dimensional mutual information. We also propose to use the entropy of the class attribute as a criterion to determine the appropriate subset of features when building classifiers. We prove that if the mutual information between a feature set X and the class attribute Y equals to the entropy of Y , then X is a Markov Blanket of Y . We show that in some cases, it is infeasible to approximate the high-dimensional mutual information with algebraic combinations of pairwise mutual information in any forms. In addition, the exhaustive searches of all combinations of features are prerequisite for finding the optimal feature subsets for classifying these kinds of data sets. We show that our approach outperforms existing filter feature subset selection methods for most of the 24 selected benchmark data sets." @default.
- W2312203001 created "2016-06-24" @default.
- W2312203001 creator A5027208445 @default.
- W2312203001 creator A5053747834 @default.
- W2312203001 date "2011-04-19" @default.
- W2312203001 modified "2023-10-14" @default.
- W2312203001 title "A Feature Subset Selection Method Based On High-Dimensional Mutual Information" @default.
- W2312203001 cites W1583145088 @default.
- W2312203001 cites W1600339875 @default.
- W2312203001 cites W1968072716 @default.
- W2312203001 cites W2017337590 @default.
- W2312203001 cites W2064208261 @default.
- W2312203001 cites W2079709766 @default.
- W2312203001 cites W2090143015 @default.
- W2312203001 cites W2096837030 @default.
- W2312203001 cites W2108728387 @default.
- W2312203001 cites W2109363337 @default.
- W2312203001 cites W2109676405 @default.
- W2312203001 cites W2110489138 @default.
- W2312203001 cites W2113890143 @default.
- W2312203001 cites W2128985829 @default.
- W2312203001 cites W2129977294 @default.
- W2312203001 cites W2134389439 @default.
- W2312203001 cites W2135893370 @default.
- W2312203001 cites W2149772057 @default.
- W2312203001 cites W2153470230 @default.
- W2312203001 cites W2154053567 @default.
- W2312203001 cites W2156483112 @default.
- W2312203001 cites W2169690805 @default.
- W2312203001 cites W2342204193 @default.
- W2312203001 cites W2610714868 @default.
- W2312203001 cites W4244238212 @default.
- W2312203001 cites W4246697467 @default.
- W2312203001 doi "https://doi.org/10.3390/e13040860" @default.
- W2312203001 hasPublicationYear "2011" @default.
- W2312203001 type Work @default.
- W2312203001 sameAs 2312203001 @default.
- W2312203001 citedByCount "33" @default.
- W2312203001 countsByYear W23122030012012 @default.
- W2312203001 countsByYear W23122030012013 @default.
- W2312203001 countsByYear W23122030012014 @default.
- W2312203001 countsByYear W23122030012015 @default.
- W2312203001 countsByYear W23122030012016 @default.
- W2312203001 countsByYear W23122030012018 @default.
- W2312203001 countsByYear W23122030012019 @default.
- W2312203001 countsByYear W23122030012020 @default.
- W2312203001 countsByYear W23122030012021 @default.
- W2312203001 countsByYear W23122030012022 @default.
- W2312203001 countsByYear W23122030012023 @default.
- W2312203001 crossrefType "journal-article" @default.
- W2312203001 hasAuthorship W2312203001A5027208445 @default.
- W2312203001 hasAuthorship W2312203001A5053747834 @default.
- W2312203001 hasBestOaLocation W23122030011 @default.
- W2312203001 hasConcept C105795698 @default.
- W2312203001 hasConcept C106301342 @default.
- W2312203001 hasConcept C119857082 @default.
- W2312203001 hasConcept C121332964 @default.
- W2312203001 hasConcept C123867240 @default.
- W2312203001 hasConcept C124101348 @default.
- W2312203001 hasConcept C124805900 @default.
- W2312203001 hasConcept C138885662 @default.
- W2312203001 hasConcept C148483581 @default.
- W2312203001 hasConcept C152139883 @default.
- W2312203001 hasConcept C153180895 @default.
- W2312203001 hasConcept C154945302 @default.
- W2312203001 hasConcept C163836022 @default.
- W2312203001 hasConcept C184898388 @default.
- W2312203001 hasConcept C2776401178 @default.
- W2312203001 hasConcept C2777212361 @default.
- W2312203001 hasConcept C33923547 @default.
- W2312203001 hasConcept C38764148 @default.
- W2312203001 hasConcept C41008148 @default.
- W2312203001 hasConcept C41895202 @default.
- W2312203001 hasConcept C54907487 @default.
- W2312203001 hasConcept C62520636 @default.
- W2312203001 hasConcept C98763669 @default.
- W2312203001 hasConceptScore W2312203001C105795698 @default.
- W2312203001 hasConceptScore W2312203001C106301342 @default.
- W2312203001 hasConceptScore W2312203001C119857082 @default.
- W2312203001 hasConceptScore W2312203001C121332964 @default.
- W2312203001 hasConceptScore W2312203001C123867240 @default.
- W2312203001 hasConceptScore W2312203001C124101348 @default.
- W2312203001 hasConceptScore W2312203001C124805900 @default.
- W2312203001 hasConceptScore W2312203001C138885662 @default.
- W2312203001 hasConceptScore W2312203001C148483581 @default.
- W2312203001 hasConceptScore W2312203001C152139883 @default.
- W2312203001 hasConceptScore W2312203001C153180895 @default.
- W2312203001 hasConceptScore W2312203001C154945302 @default.
- W2312203001 hasConceptScore W2312203001C163836022 @default.
- W2312203001 hasConceptScore W2312203001C184898388 @default.
- W2312203001 hasConceptScore W2312203001C2776401178 @default.
- W2312203001 hasConceptScore W2312203001C2777212361 @default.
- W2312203001 hasConceptScore W2312203001C33923547 @default.
- W2312203001 hasConceptScore W2312203001C38764148 @default.
- W2312203001 hasConceptScore W2312203001C41008148 @default.
- W2312203001 hasConceptScore W2312203001C41895202 @default.
- W2312203001 hasConceptScore W2312203001C54907487 @default.
- W2312203001 hasConceptScore W2312203001C62520636 @default.