Matches in SemOpenAlex for { <https://semopenalex.org/work/W2312301245> ?p ?o ?g. }
- W2312301245 abstract "This work is devoted to investigating EEG-based biometric recognition systems. One potential advantage of using EEG signals for person recognition is the difficulty in generating artificial signals with biometric characteristics, thus making the spoofing of EEG-based biometric systems a challenging task. However, more works needs to be done to overcome certain drawbacks that currently prevent the adoption of EEG biometrics in real-life scenarios: 1) usually large number of employed sensors, 2) still relatively low recognition rates (compared with some other biometric modalities), 3) the template ageing effect.The existing shortcomings of EEG biometrics and their possible solutions are addressed from three main perspectives in the thesis: pre-processing, feature extraction and pattern classification. In pre-processing, task (stimuli) sensitivity and noise removal are investigated and discussed in separated chapters. For feature extraction, four novel features are proposed; for pattern classification, a new quality filtering method, and a novel instance-based learning algorithm are described in respective chapters. A self-collected database (Mobile Sensor Database) is employed to investigate some important biometric specified effects (e.g. the template ageing effect; using low-cost sensor for recognition).In the research for pre-processing, a training data accumulation scheme is developed, which improves the recognition performance by combining the data of different mental tasks for training; a new wavelet-based de-noising method is developed, its effectiveness in person identification is found to be considerable. Two novel features based on Empirical Mode Decomposition and Hilbert Transform are developed, which provided the best biometric performance amongst all the newly proposed features and other state-of-the-art features reported in the thesis; the other two newly developed wavelet-based features, while having slightly lower recognition accuracies, were computationally more efficient. The quality filtering algorithm is designed to employ the most informative EEG signal segments: experimental results indicate using a small subset of the available data for feature training could receive reasonable improvement in identification rate. The proposed instance-based template reconstruction learning algorithm has shown significant effectiveness when tested using both the publicly available and self-collected databases." @default.
- W2312301245 created "2016-06-24" @default.
- W2312301245 creator A5040786747 @default.
- W2312301245 date "2015-09-01" @default.
- W2312301245 modified "2023-09-23" @default.
- W2312301245 title "The use of EEG signals for biometric person recognition" @default.
- W2312301245 cites W138207775 @default.
- W2312301245 cites W1484264815 @default.
- W2312301245 cites W1491186747 @default.
- W2312301245 cites W1502067874 @default.
- W2312301245 cites W1526146785 @default.
- W2312301245 cites W1536620489 @default.
- W2312301245 cites W1575913699 @default.
- W2312301245 cites W1580765281 @default.
- W2312301245 cites W1586405805 @default.
- W2312301245 cites W1623120455 @default.
- W2312301245 cites W1680392829 @default.
- W2312301245 cites W1723494554 @default.
- W2312301245 cites W182695033 @default.
- W2312301245 cites W1862394037 @default.
- W2312301245 cites W1903340714 @default.
- W2312301245 cites W1924177402 @default.
- W2312301245 cites W1967167639 @default.
- W2312301245 cites W1968058591 @default.
- W2312301245 cites W1968945972 @default.
- W2312301245 cites W1979018714 @default.
- W2312301245 cites W1980553000 @default.
- W2312301245 cites W1986197724 @default.
- W2312301245 cites W1989155160 @default.
- W2312301245 cites W1989960873 @default.
- W2312301245 cites W1993694278 @default.
- W2312301245 cites W1996624683 @default.
- W2312301245 cites W1996687698 @default.
- W2312301245 cites W2001619934 @default.
- W2312301245 cites W2001895408 @default.
- W2312301245 cites W2002138225 @default.
- W2312301245 cites W2007221293 @default.
- W2312301245 cites W2008278511 @default.
- W2312301245 cites W2011584637 @default.
- W2312301245 cites W2011762057 @default.
- W2312301245 cites W2028497691 @default.
- W2312301245 cites W2031331336 @default.
- W2312301245 cites W2032318940 @default.
- W2312301245 cites W2033807083 @default.
- W2312301245 cites W2035570651 @default.
- W2312301245 cites W2037664959 @default.
- W2312301245 cites W2039846342 @default.
- W2312301245 cites W2042237257 @default.
- W2312301245 cites W2042944397 @default.
- W2312301245 cites W2054526047 @default.
- W2312301245 cites W2056633782 @default.
- W2312301245 cites W2062024414 @default.
- W2312301245 cites W2062826588 @default.
- W2312301245 cites W2063483288 @default.
- W2312301245 cites W2069737407 @default.
- W2312301245 cites W2070410525 @default.
- W2312301245 cites W2077204677 @default.
- W2312301245 cites W2078952398 @default.
- W2312301245 cites W2080922998 @default.
- W2312301245 cites W2081186295 @default.
- W2312301245 cites W2083958080 @default.
- W2312301245 cites W2087962094 @default.
- W2312301245 cites W2089648273 @default.
- W2312301245 cites W2096352448 @default.
- W2312301245 cites W2098057602 @default.
- W2312301245 cites W2100115174 @default.
- W2312301245 cites W2101913765 @default.
- W2312301245 cites W2101914198 @default.
- W2312301245 cites W2102376611 @default.
- W2312301245 cites W2103869314 @default.
- W2312301245 cites W2104640717 @default.
- W2312301245 cites W2105004615 @default.
- W2312301245 cites W2105710559 @default.
- W2312301245 cites W2106665847 @default.
- W2312301245 cites W2107906820 @default.
- W2312301245 cites W2109616123 @default.
- W2312301245 cites W2113622567 @default.
- W2312301245 cites W2114493160 @default.
- W2312301245 cites W2115755118 @default.
- W2312301245 cites W2119647652 @default.
- W2312301245 cites W2119821739 @default.
- W2312301245 cites W2120390927 @default.
- W2312301245 cites W2120635976 @default.
- W2312301245 cites W2122410182 @default.
- W2312301245 cites W2122496402 @default.
- W2312301245 cites W2122585011 @default.
- W2312301245 cites W2125687350 @default.
- W2312301245 cites W2126100024 @default.
- W2312301245 cites W2127389037 @default.
- W2312301245 cites W2128911505 @default.
- W2312301245 cites W2128962046 @default.
- W2312301245 cites W2129476886 @default.
- W2312301245 cites W2132918094 @default.
- W2312301245 cites W2134262590 @default.
- W2312301245 cites W2134577338 @default.
- W2312301245 cites W2136219936 @default.
- W2312301245 cites W2136365570 @default.
- W2312301245 cites W2137764249 @default.
- W2312301245 cites W2138444990 @default.
- W2312301245 cites W2139285734 @default.