Matches in SemOpenAlex for { <https://semopenalex.org/work/W2312750317> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2312750317 abstract "The neuroimaging data typically has extremely high dimensions. Therefore, dimensionality reduction is commonly used to extract discriminative features. Kernel entropy component analysis (KECA) is a newly developed data transformation method, where the key idea is to preserve the most estimated Renyi entropy of the input space data set via a kernel-based estimator. Despite its good performance, KECA still suffers from the problem of low computational efficiency for large-scale data. In this paper, we proposed a sparse KECA (SKECA) algorithm with the recursive divide-and-conquer based solution, and then applied it to perform dimensionality reduction of neuroimaging data for classification of the Alzheimer's disease (AD). We compared the SKECA with KECA, principal component analysis (PCA), kernel PCA (KPCA) and sparse KPCA. The experimental results indicate that the proposed SKECA has most superior performance to all other algorithms when extracting discriminative features from neuroimaging data for AD classification." @default.
- W2312750317 created "2016-06-24" @default.
- W2312750317 creator A5020648481 @default.
- W2312750317 creator A5032832318 @default.
- W2312750317 date "2014-08-01" @default.
- W2312750317 modified "2023-09-24" @default.
- W2312750317 title "Sparse kernel entropy component analysis for dimensionality reduction of neuroimaging data" @default.
- W2312750317 cites W1648445109 @default.
- W2312750317 cites W1900290916 @default.
- W2312750317 cites W1965359844 @default.
- W2312750317 cites W1969959732 @default.
- W2312750317 cites W1975900269 @default.
- W2312750317 cites W1978494516 @default.
- W2312750317 cites W1982031183 @default.
- W2312750317 cites W2005743500 @default.
- W2312750317 cites W2012742969 @default.
- W2312750317 cites W2030936242 @default.
- W2312750317 cites W2044809283 @default.
- W2312750317 cites W2078524519 @default.
- W2312750317 cites W2090533051 @default.
- W2312750317 cites W2097417531 @default.
- W2312750317 cites W2119388857 @default.
- W2312750317 cites W2141261622 @default.
- W2312750317 cites W2146089088 @default.
- W2312750317 cites W2149803014 @default.
- W2312750317 cites W2962763638 @default.
- W2312750317 cites W96090752 @default.
- W2312750317 doi "https://doi.org/10.1109/embc.2014.6944344" @default.
- W2312750317 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25570712" @default.
- W2312750317 hasPublicationYear "2014" @default.
- W2312750317 type Work @default.
- W2312750317 sameAs 2312750317 @default.
- W2312750317 citedByCount "0" @default.
- W2312750317 crossrefType "proceedings-article" @default.
- W2312750317 hasAuthorship W2312750317A5020648481 @default.
- W2312750317 hasAuthorship W2312750317A5032832318 @default.
- W2312750317 hasConcept C106301342 @default.
- W2312750317 hasConcept C114614502 @default.
- W2312750317 hasConcept C119857082 @default.
- W2312750317 hasConcept C121332964 @default.
- W2312750317 hasConcept C122280245 @default.
- W2312750317 hasConcept C12267149 @default.
- W2312750317 hasConcept C153180895 @default.
- W2312750317 hasConcept C154945302 @default.
- W2312750317 hasConcept C182335926 @default.
- W2312750317 hasConcept C24252448 @default.
- W2312750317 hasConcept C27438332 @default.
- W2312750317 hasConcept C33923547 @default.
- W2312750317 hasConcept C41008148 @default.
- W2312750317 hasConcept C62520636 @default.
- W2312750317 hasConcept C70518039 @default.
- W2312750317 hasConcept C74193536 @default.
- W2312750317 hasConcept C97931131 @default.
- W2312750317 hasConceptScore W2312750317C106301342 @default.
- W2312750317 hasConceptScore W2312750317C114614502 @default.
- W2312750317 hasConceptScore W2312750317C119857082 @default.
- W2312750317 hasConceptScore W2312750317C121332964 @default.
- W2312750317 hasConceptScore W2312750317C122280245 @default.
- W2312750317 hasConceptScore W2312750317C12267149 @default.
- W2312750317 hasConceptScore W2312750317C153180895 @default.
- W2312750317 hasConceptScore W2312750317C154945302 @default.
- W2312750317 hasConceptScore W2312750317C182335926 @default.
- W2312750317 hasConceptScore W2312750317C24252448 @default.
- W2312750317 hasConceptScore W2312750317C27438332 @default.
- W2312750317 hasConceptScore W2312750317C33923547 @default.
- W2312750317 hasConceptScore W2312750317C41008148 @default.
- W2312750317 hasConceptScore W2312750317C62520636 @default.
- W2312750317 hasConceptScore W2312750317C70518039 @default.
- W2312750317 hasConceptScore W2312750317C74193536 @default.
- W2312750317 hasConceptScore W2312750317C97931131 @default.
- W2312750317 hasLocation W23127503171 @default.
- W2312750317 hasLocation W23127503172 @default.
- W2312750317 hasOpenAccess W2312750317 @default.
- W2312750317 hasPrimaryLocation W23127503171 @default.
- W2312750317 hasRelatedWork W133771346 @default.
- W2312750317 hasRelatedWork W1488165778 @default.
- W2312750317 hasRelatedWork W1756633271 @default.
- W2312750317 hasRelatedWork W1998640076 @default.
- W2312750317 hasRelatedWork W2034481920 @default.
- W2312750317 hasRelatedWork W2071626605 @default.
- W2312750317 hasRelatedWork W2145759202 @default.
- W2312750317 hasRelatedWork W2148585830 @default.
- W2312750317 hasRelatedWork W2312750317 @default.
- W2312750317 hasRelatedWork W2356121404 @default.
- W2312750317 isParatext "false" @default.
- W2312750317 isRetracted "false" @default.
- W2312750317 magId "2312750317" @default.
- W2312750317 workType "article" @default.