Matches in SemOpenAlex for { <https://semopenalex.org/work/W2312863950> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2312863950 abstract "During planning and control of autonomous robots in a pervasive environment designed to serve people, we will inevitably face the situations of needing to perform multiple complex tasks. Management and optimization of the execution of complex tasks involve the design of efficient approach and framework based on algorithm, artificial intelligence, machine learning, cognitive science, etc. In this dissertation, we have developed a new method for complex task planning of robots, so that they can improve the service for the elderly and the disabled. The word episode comes from Greek, which means event, or occurrence. Humans learn and plan from past episodes by connecting them to the current environment and the task at hand. In cognitive science, episodic memory refers to a human memory subsystem that is concerned with storing and remembering specific sequences and occurrences of events pertaining to a person's ongoing perceptions, experiences, decisions and actions [1]. It helps a human plan the next task. In recent years, researchers have begun to realize the importance of episodic memory to artificial intelligence and cognitive robots, and the episodic like approaches to general event processing. In this dissertation, we propose a computational framework that utilizes the idea of episodic memory to cope with robot planning on complex tasks. Our approach is based on the traditional mathematical model of Markov decision processes, combining the episodic memory approach. In this way, it provides a human-like thinking for autonomous robots, so that they can accomplish complex tasks in pervasive assistive environments, and thus achieve the goal of assisting the everyday living of people. In regard to the traditional hierarchical algorithms for Markov decision processes, although they have been proved to be useful for the problem domains with multiple subtasks due to their strength in task decomposition, they are weak in task abstraction, something that is more important for task analysis and modeling. Using episodic task planning and learning, we propose a task-oriented design approach, which addresses the functionality of task abstraction. Our approach builds an episodic task model from different problem domains, which the robot uses to plan at every step, with more concise structure and much improved performance than the traditional hierarchical model. According to our analysis and experimental evaluation, our approach has shown to have better performance than the existing hierarchical algorithms, such as MAXQ [2] and HEXQ [3]. We further introduce a hierarchical multimodal framework for robot planning in multiple-sensor pervasive environments, using multimodal POMDPs . Considering realistic assistive applications may be time-critical and highly related with the risk of planning, we develop a risk-aware approach, allowing robots to possess risk attitudes [4] in their planning. Thus, we have answered the question of how to plan and make sequential decisions efficiently and effectively under complex tasks in pervasive assistive environments, which is very important for the design of applications to assist the living of the elderly and the disabled." @default.
- W2312863950 created "2016-06-24" @default.
- W2312863950 creator A5000614017 @default.
- W2312863950 creator A5044363105 @default.
- W2312863950 date "2010-01-01" @default.
- W2312863950 modified "2023-09-24" @default.
- W2312863950 title "Episodic task planning and learning in pervasive environments" @default.
- W2312863950 hasPublicationYear "2010" @default.
- W2312863950 type Work @default.
- W2312863950 sameAs 2312863950 @default.
- W2312863950 citedByCount "0" @default.
- W2312863950 crossrefType "dissertation" @default.
- W2312863950 hasAuthorship W2312863950A5000614017 @default.
- W2312863950 hasAuthorship W2312863950A5044363105 @default.
- W2312863950 hasConcept C107457646 @default.
- W2312863950 hasConcept C127413603 @default.
- W2312863950 hasConcept C154945302 @default.
- W2312863950 hasConcept C15744967 @default.
- W2312863950 hasConcept C169760540 @default.
- W2312863950 hasConcept C169900460 @default.
- W2312863950 hasConcept C200601418 @default.
- W2312863950 hasConcept C201995342 @default.
- W2312863950 hasConcept C2776544517 @default.
- W2312863950 hasConcept C2780451532 @default.
- W2312863950 hasConcept C41008148 @default.
- W2312863950 hasConcept C88576662 @default.
- W2312863950 hasConcept C90509273 @default.
- W2312863950 hasConceptScore W2312863950C107457646 @default.
- W2312863950 hasConceptScore W2312863950C127413603 @default.
- W2312863950 hasConceptScore W2312863950C154945302 @default.
- W2312863950 hasConceptScore W2312863950C15744967 @default.
- W2312863950 hasConceptScore W2312863950C169760540 @default.
- W2312863950 hasConceptScore W2312863950C169900460 @default.
- W2312863950 hasConceptScore W2312863950C200601418 @default.
- W2312863950 hasConceptScore W2312863950C201995342 @default.
- W2312863950 hasConceptScore W2312863950C2776544517 @default.
- W2312863950 hasConceptScore W2312863950C2780451532 @default.
- W2312863950 hasConceptScore W2312863950C41008148 @default.
- W2312863950 hasConceptScore W2312863950C88576662 @default.
- W2312863950 hasConceptScore W2312863950C90509273 @default.
- W2312863950 hasLocation W23128639501 @default.
- W2312863950 hasOpenAccess W2312863950 @default.
- W2312863950 hasPrimaryLocation W23128639501 @default.
- W2312863950 hasRelatedWork W130175515 @default.
- W2312863950 hasRelatedWork W2063471043 @default.
- W2312863950 hasRelatedWork W2107704729 @default.
- W2312863950 hasRelatedWork W2115231151 @default.
- W2312863950 hasRelatedWork W2116111609 @default.
- W2312863950 hasRelatedWork W2273802639 @default.
- W2312863950 hasRelatedWork W2466336723 @default.
- W2312863950 hasRelatedWork W2470629089 @default.
- W2312863950 hasRelatedWork W2571632457 @default.
- W2312863950 hasRelatedWork W2583372322 @default.
- W2312863950 hasRelatedWork W2591592925 @default.
- W2312863950 hasRelatedWork W2767661932 @default.
- W2312863950 hasRelatedWork W2948994298 @default.
- W2312863950 hasRelatedWork W2972888596 @default.
- W2312863950 hasRelatedWork W3125778298 @default.
- W2312863950 hasRelatedWork W3128545355 @default.
- W2312863950 hasRelatedWork W3193868605 @default.
- W2312863950 hasRelatedWork W3209494879 @default.
- W2312863950 hasRelatedWork W824666836 @default.
- W2312863950 hasRelatedWork W837649806 @default.
- W2312863950 isParatext "false" @default.
- W2312863950 isRetracted "false" @default.
- W2312863950 magId "2312863950" @default.
- W2312863950 workType "dissertation" @default.