Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313022313> ?p ?o ?g. }
- W2313022313 endingPage "771" @default.
- W2313022313 startingPage "759" @default.
- W2313022313 abstract "Dimension reduction is an important topic in pattern analysis and machine learning, and it has wide applications in feature representation and pattern classification. In the past two decades, sliced inverse regression (SIR) has attracted much research efforts due to its effectiveness and efficacy in dimension reduction. However, two drawbacks limit further applications of SIR. First, the computation complexity of SIR is usually high in the situation of high-dimensional data. Second, sparsity of projection subspace is not well mined for improving the feature selection and model interpretation abilities. This paper proposes to compute the SIR projection vectors in the spectral space, then an approximated regression solution can be obtained with a faster speed. Moreover, the adaptive lasso is used to attain a sparse and globally optimal solution, which is important in variable selection. To complete the robust pattern classification task with corruptions, a correntropy-based and class-wise regression model is designed in this paper. It takes a smooth penalty instead of sparsity constraint in the regression coefficients, and it can be conducted in class-wise, thus it is more flexible in practice. Extensive experiments are conducted by using some real and benchmark data sets, e.g., high-dimensional facial images and gene microarray data, to evaluate the new algorithms. The new proposals attain competitive results and are compared with other state-of-the-art methods." @default.
- W2313022313 created "2016-06-24" @default.
- W2313022313 creator A5005150832 @default.
- W2313022313 creator A5020478086 @default.
- W2313022313 creator A5043031658 @default.
- W2313022313 creator A5076933538 @default.
- W2313022313 date "2017-03-01" @default.
- W2313022313 modified "2023-10-17" @default.
- W2313022313 title "Sliced Inverse Regression With Adaptive Spectral Sparsity for Dimension Reduction" @default.
- W2313022313 cites W1596717185 @default.
- W2313022313 cites W1673021977 @default.
- W2313022313 cites W1966701961 @default.
- W2313022313 cites W1970089434 @default.
- W2313022313 cites W1973167793 @default.
- W2313022313 cites W1975900269 @default.
- W2313022313 cites W1983265425 @default.
- W2313022313 cites W1987390907 @default.
- W2313022313 cites W1989267105 @default.
- W2313022313 cites W1990718060 @default.
- W2313022313 cites W2000027250 @default.
- W2313022313 cites W2006793117 @default.
- W2313022313 cites W2010000700 @default.
- W2313022313 cites W2014596061 @default.
- W2313022313 cites W2020925091 @default.
- W2313022313 cites W2021275963 @default.
- W2313022313 cites W2022118705 @default.
- W2313022313 cites W2025521033 @default.
- W2313022313 cites W2030219534 @default.
- W2313022313 cites W2030507150 @default.
- W2313022313 cites W2039375240 @default.
- W2313022313 cites W2042453128 @default.
- W2313022313 cites W2050849575 @default.
- W2313022313 cites W2062832364 @default.
- W2313022313 cites W2071385623 @default.
- W2313022313 cites W2072738586 @default.
- W2313022313 cites W2074682976 @default.
- W2313022313 cites W2076944607 @default.
- W2313022313 cites W2081648593 @default.
- W2313022313 cites W2081988173 @default.
- W2313022313 cites W2091956075 @default.
- W2313022313 cites W2097222539 @default.
- W2313022313 cites W2100310139 @default.
- W2313022313 cites W2104802194 @default.
- W2313022313 cites W2106253207 @default.
- W2313022313 cites W2121647436 @default.
- W2313022313 cites W2122825543 @default.
- W2313022313 cites W2123921160 @default.
- W2313022313 cites W2127615881 @default.
- W2313022313 cites W2129812935 @default.
- W2313022313 cites W2131060185 @default.
- W2313022313 cites W2131347209 @default.
- W2313022313 cites W2137823674 @default.
- W2313022313 cites W2138019504 @default.
- W2313022313 cites W2153635508 @default.
- W2313022313 cites W2161365042 @default.
- W2313022313 cites W2163490846 @default.
- W2313022313 cites W2165916500 @default.
- W2313022313 cites W2318493377 @default.
- W2313022313 cites W2787894218 @default.
- W2313022313 cites W3148981562 @default.
- W2313022313 doi "https://doi.org/10.1109/tcyb.2016.2526630" @default.
- W2313022313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27076475" @default.
- W2313022313 hasPublicationYear "2017" @default.
- W2313022313 type Work @default.
- W2313022313 sameAs 2313022313 @default.
- W2313022313 citedByCount "4" @default.
- W2313022313 countsByYear W23130223132017 @default.
- W2313022313 countsByYear W23130223132019 @default.
- W2313022313 countsByYear W23130223132020 @default.
- W2313022313 countsByYear W23130223132023 @default.
- W2313022313 crossrefType "journal-article" @default.
- W2313022313 hasAuthorship W2313022313A5005150832 @default.
- W2313022313 hasAuthorship W2313022313A5020478086 @default.
- W2313022313 hasAuthorship W2313022313A5043031658 @default.
- W2313022313 hasAuthorship W2313022313A5076933538 @default.
- W2313022313 hasConcept C105795698 @default.
- W2313022313 hasConcept C111335779 @default.
- W2313022313 hasConcept C11413529 @default.
- W2313022313 hasConcept C13280743 @default.
- W2313022313 hasConcept C136764020 @default.
- W2313022313 hasConcept C148483581 @default.
- W2313022313 hasConcept C153180895 @default.
- W2313022313 hasConcept C154945302 @default.
- W2313022313 hasConcept C185798385 @default.
- W2313022313 hasConcept C202444582 @default.
- W2313022313 hasConcept C205649164 @default.
- W2313022313 hasConcept C2524010 @default.
- W2313022313 hasConcept C2776036281 @default.
- W2313022313 hasConcept C27931671 @default.
- W2313022313 hasConcept C32834561 @default.
- W2313022313 hasConcept C33676613 @default.
- W2313022313 hasConcept C33923547 @default.
- W2313022313 hasConcept C37616216 @default.
- W2313022313 hasConcept C41008148 @default.
- W2313022313 hasConcept C41341539 @default.
- W2313022313 hasConcept C57493831 @default.
- W2313022313 hasConcept C70518039 @default.
- W2313022313 hasConcept C83546350 @default.