Matches in SemOpenAlex for { <https://semopenalex.org/work/W2313081741> ?p ?o ?g. }
- W2313081741 endingPage "103" @default.
- W2313081741 startingPage "89" @default.
- W2313081741 abstract "The preoccupation with modelling credit scoring systems including their relevance to predicting and decision making in the financial sector has been with developed countries, whilst developing countries have been largely neglected. The focus of our investigation is on the Cameroonian banking sector with implications for fellow members of the Banque des Etats de L'Afrique Centrale (BEAC) family which apply the same system. We apply logistic regression (LR), Classification and Regression Tree (CART) and Cascade Correlation Neural Network (CCNN) in building our knowledge-based scoring models. To compare various models' performances, we use ROC curves and Gini coefficients as evaluation criteria and the Kolmogorov-Smirnov curve as a robustness test. The results demonstrate that an improvement in terms of predicting power from 15.69% default cases under the current system, to 7.68% based on the best scoring model, namely CCNN can be achieved. The predictive capabilities of all models are rated as at least very good using the Gini coefficient; and rated excellent using the ROC curve for CCNN. Our robustness test confirmed these results. It should be emphasised that in terms of prediction rate, CCNN is superior to the other techniques investigated in this paper. Also, a sensitivity analysis of the variables identifies previous occupation, borrower's account functioning, guarantees, other loans and monthly expenses as key variables in the forecasting and decision making processes which are at the heart of overall credit policy." @default.
- W2313081741 created "2016-06-24" @default.
- W2313081741 creator A5008644318 @default.
- W2313081741 creator A5011669648 @default.
- W2313081741 creator A5043169421 @default.
- W2313081741 creator A5081782998 @default.
- W2313081741 date "2016-07-01" @default.
- W2313081741 modified "2023-10-03" @default.
- W2313081741 title "Predicting creditworthiness in retail banking with limited scoring data" @default.
- W2313081741 cites W1673066967 @default.
- W2313081741 cites W1968831178 @default.
- W2313081741 cites W1970113371 @default.
- W2313081741 cites W1971547695 @default.
- W2313081741 cites W1971746503 @default.
- W2313081741 cites W1973704036 @default.
- W2313081741 cites W1975421067 @default.
- W2313081741 cites W1975586030 @default.
- W2313081741 cites W1980770954 @default.
- W2313081741 cites W1981093066 @default.
- W2313081741 cites W1982120517 @default.
- W2313081741 cites W1985546543 @default.
- W2313081741 cites W1989137294 @default.
- W2313081741 cites W1990696070 @default.
- W2313081741 cites W1993922907 @default.
- W2313081741 cites W1995705912 @default.
- W2313081741 cites W1995953281 @default.
- W2313081741 cites W1998987664 @default.
- W2313081741 cites W2000656248 @default.
- W2313081741 cites W2001619934 @default.
- W2313081741 cites W2003985069 @default.
- W2313081741 cites W2005510983 @default.
- W2313081741 cites W2020278126 @default.
- W2313081741 cites W2043077358 @default.
- W2313081741 cites W2056221673 @default.
- W2313081741 cites W2058988827 @default.
- W2313081741 cites W2063240967 @default.
- W2313081741 cites W2065822953 @default.
- W2313081741 cites W2068911395 @default.
- W2313081741 cites W2071943685 @default.
- W2313081741 cites W2082133383 @default.
- W2313081741 cites W2083277086 @default.
- W2313081741 cites W2084582723 @default.
- W2313081741 cites W2086841270 @default.
- W2313081741 cites W2089811952 @default.
- W2313081741 cites W2093829413 @default.
- W2313081741 cites W2095148636 @default.
- W2313081741 cites W2107282997 @default.
- W2313081741 cites W2124532504 @default.
- W2313081741 cites W2124617452 @default.
- W2313081741 cites W2135411679 @default.
- W2313081741 cites W2140301981 @default.
- W2313081741 cites W2239014529 @default.
- W2313081741 cites W3122651343 @default.
- W2313081741 doi "https://doi.org/10.1016/j.knosys.2016.03.023" @default.
- W2313081741 hasPublicationYear "2016" @default.
- W2313081741 type Work @default.
- W2313081741 sameAs 2313081741 @default.
- W2313081741 citedByCount "36" @default.
- W2313081741 countsByYear W23130817412017 @default.
- W2313081741 countsByYear W23130817412018 @default.
- W2313081741 countsByYear W23130817412019 @default.
- W2313081741 countsByYear W23130817412020 @default.
- W2313081741 countsByYear W23130817412021 @default.
- W2313081741 countsByYear W23130817412022 @default.
- W2313081741 countsByYear W23130817412023 @default.
- W2313081741 crossrefType "journal-article" @default.
- W2313081741 hasAuthorship W2313081741A5008644318 @default.
- W2313081741 hasAuthorship W2313081741A5011669648 @default.
- W2313081741 hasAuthorship W2313081741A5043169421 @default.
- W2313081741 hasAuthorship W2313081741A5081782998 @default.
- W2313081741 hasBestOaLocation W23130817411 @default.
- W2313081741 hasConcept C10138342 @default.
- W2313081741 hasConcept C144133560 @default.
- W2313081741 hasConcept C156152238 @default.
- W2313081741 hasConcept C41008148 @default.
- W2313081741 hasConceptScore W2313081741C10138342 @default.
- W2313081741 hasConceptScore W2313081741C144133560 @default.
- W2313081741 hasConceptScore W2313081741C156152238 @default.
- W2313081741 hasConceptScore W2313081741C41008148 @default.
- W2313081741 hasLocation W23130817411 @default.
- W2313081741 hasLocation W23130817412 @default.
- W2313081741 hasLocation W23130817413 @default.
- W2313081741 hasLocation W23130817414 @default.
- W2313081741 hasLocation W23130817415 @default.
- W2313081741 hasLocation W23130817416 @default.
- W2313081741 hasLocation W23130817417 @default.
- W2313081741 hasOpenAccess W2313081741 @default.
- W2313081741 hasPrimaryLocation W23130817411 @default.
- W2313081741 hasRelatedWork W2049775471 @default.
- W2313081741 hasRelatedWork W2093578348 @default.
- W2313081741 hasRelatedWork W2350741829 @default.
- W2313081741 hasRelatedWork W2358668433 @default.
- W2313081741 hasRelatedWork W2376932109 @default.
- W2313081741 hasRelatedWork W2382290278 @default.
- W2313081741 hasRelatedWork W2390279801 @default.
- W2313081741 hasRelatedWork W2748952813 @default.
- W2313081741 hasRelatedWork W2899084033 @default.
- W2313081741 hasRelatedWork W3004735627 @default.