Matches in SemOpenAlex for { <https://semopenalex.org/work/W23131777> ?p ?o ?g. }
- W23131777 endingPage "101" @default.
- W23131777 startingPage "54" @default.
- W23131777 abstract "Free AccessAboutSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked InEmail Go to SectionFree Access HomeINFORMS TutORials in Operations ResearchEmerging Theory, Methods, and Applications Network Models in Railroad Planning and SchedulingRavindra K. Ahuja, Claudio B. Cunha, Güvenç ŞahinRavindra K. Ahuja, Claudio B. Cunha, Güvenç ŞahinPublished Online:14 Oct 2014https://doi.org/10.1287/educ.1053.0013Abstract The past few decades have witnessed numerous applications of operations research in logistics, and these applications have resulted in substantial cost savings. However, the U.S. railroad industry has not benefited from the advances, and most of the planning and scheduling processes do not use modeling and optimization. Indeed, most of the planning and scheduling problems arising in railroads, which involve billions of dollars of resources annually, are currently being solved manually. The main reason for not using OR models and methodologies is the mathematical difficulty of these problems, which prevented the development of decision tools that railroads can use to obtain implementable solutions. However, now this situation is gradually changing. We are developing cutting-edge operations research algorithms, by using state-of-the-art ideas from linear and integer programming, network flows, discrete optimization, heuristics, and very large-scale neighborhood (VLSN) search, that railroads have already started using and from which they have started deriving immense benefits. This chapter gives an overview of the railroad planning and scheduling problems, including the railroad blocking problem, train scheduling problem, yard location problem, train dispatching problem, locomotive scheduling problem, and crew scheduling problem. Some of these problems are very large-scale integer programming problems containing billions or even trillions of integer variables. We will describe algorithms that can solve these problems to near-optimality within one to two hours of computational time. We present computational results of these algorithms on the data provided by several U.S. railroads, demonstrating potential benefits from tens to hundreds of millions annually. This publication has no references to display. Previous Back to Top Next FiguresReferencesRelatedInformationCited ByFrom Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic ProgrammingBelgacem Bouzaiene-Ayari, Clark Cheng, Sourav Das, Ricardo Fiorillo, Warren B. Powell28 July 2014 | Transportation Science, Vol. 50, No. 2Scheduled Service Network Design for Freight Rail TransportationEndong Zhu, Teodor Gabriel Crainic, Michel Gendreau25 April 2014 | Operations Research, Vol. 62, No. 2 Emerging Theory, Methods, and ApplicationsSeptember 2005 Article Information Metrics Downloaded 1,834 times in the past 12 months Information Published Online:October 14, 2014 Copyright © 2005, INFORMSCite asRavindra K. AhujaClaudio B. CunhaGüvenç Şahin (2014) Network Models in Railroad Planning and Scheduling. INFORMS TutORials in Operations Research null(null):54-101. https://doi.org/10.1287/educ.1053.0013Keywordsrailroad schedulingtransportationinteger programmingnetworkscombinatorial optimizationheuristicsmodeling" @default.
- W23131777 created "2016-06-24" @default.
- W23131777 creator A5081808814 @default.
- W23131777 creator A5089937541 @default.
- W23131777 date "2005-09-01" @default.
- W23131777 modified "2023-09-27" @default.
- W23131777 title "Network Models in Railroad Planning and Scheduling" @default.
- W23131777 cites W1517272885 @default.
- W23131777 cites W1522575686 @default.
- W23131777 cites W1550891994 @default.
- W23131777 cites W1964718673 @default.
- W23131777 cites W197038856 @default.
- W23131777 cites W1977545325 @default.
- W23131777 cites W1984537795 @default.
- W23131777 cites W1993663269 @default.
- W23131777 cites W1998747910 @default.
- W23131777 cites W2000200530 @default.
- W23131777 cites W2000954579 @default.
- W23131777 cites W2006889965 @default.
- W23131777 cites W2007358669 @default.
- W23131777 cites W2010966500 @default.
- W23131777 cites W2013015143 @default.
- W23131777 cites W2015837302 @default.
- W23131777 cites W2018577633 @default.
- W23131777 cites W2024166508 @default.
- W23131777 cites W2033916191 @default.
- W23131777 cites W2034979743 @default.
- W23131777 cites W2046844497 @default.
- W23131777 cites W2071411665 @default.
- W23131777 cites W2074452465 @default.
- W23131777 cites W2083734699 @default.
- W23131777 cites W2120298993 @default.
- W23131777 cites W2128839390 @default.
- W23131777 cites W2136637573 @default.
- W23131777 cites W2137849348 @default.
- W23131777 cites W2140764876 @default.
- W23131777 cites W2143946229 @default.
- W23131777 cites W2153448631 @default.
- W23131777 cites W2157222781 @default.
- W23131777 cites W2470895913 @default.
- W23131777 cites W2657393714 @default.
- W23131777 cites W574550922 @default.
- W23131777 cites W782857880 @default.
- W23131777 cites W1522105036 @default.
- W23131777 cites W242141251 @default.
- W23131777 doi "https://doi.org/10.1287/educ.1053.0013" @default.
- W23131777 hasPublicationYear "2005" @default.
- W23131777 type Work @default.
- W23131777 sameAs 23131777 @default.
- W23131777 citedByCount "42" @default.
- W23131777 countsByYear W231317772012 @default.
- W23131777 countsByYear W231317772013 @default.
- W23131777 countsByYear W231317772014 @default.
- W23131777 countsByYear W231317772015 @default.
- W23131777 countsByYear W231317772016 @default.
- W23131777 countsByYear W231317772017 @default.
- W23131777 countsByYear W231317772019 @default.
- W23131777 countsByYear W231317772020 @default.
- W23131777 countsByYear W231317772021 @default.
- W23131777 countsByYear W231317772022 @default.
- W23131777 crossrefType "book-chapter" @default.
- W23131777 hasAuthorship W23131777A5081808814 @default.
- W23131777 hasAuthorship W23131777A5089937541 @default.
- W23131777 hasBestOaLocation W231317771 @default.
- W23131777 hasConcept C111919701 @default.
- W23131777 hasConcept C114073186 @default.
- W23131777 hasConcept C11413529 @default.
- W23131777 hasConcept C127413603 @default.
- W23131777 hasConcept C127705205 @default.
- W23131777 hasConcept C13736549 @default.
- W23131777 hasConcept C154945302 @default.
- W23131777 hasConcept C206729178 @default.
- W23131777 hasConcept C21547014 @default.
- W23131777 hasConcept C2776986690 @default.
- W23131777 hasConcept C41008148 @default.
- W23131777 hasConcept C41045048 @default.
- W23131777 hasConcept C42475967 @default.
- W23131777 hasConcept C56086750 @default.
- W23131777 hasConceptScore W23131777C111919701 @default.
- W23131777 hasConceptScore W23131777C114073186 @default.
- W23131777 hasConceptScore W23131777C11413529 @default.
- W23131777 hasConceptScore W23131777C127413603 @default.
- W23131777 hasConceptScore W23131777C127705205 @default.
- W23131777 hasConceptScore W23131777C13736549 @default.
- W23131777 hasConceptScore W23131777C154945302 @default.
- W23131777 hasConceptScore W23131777C206729178 @default.
- W23131777 hasConceptScore W23131777C21547014 @default.
- W23131777 hasConceptScore W23131777C2776986690 @default.
- W23131777 hasConceptScore W23131777C41008148 @default.
- W23131777 hasConceptScore W23131777C41045048 @default.
- W23131777 hasConceptScore W23131777C42475967 @default.
- W23131777 hasConceptScore W23131777C56086750 @default.
- W23131777 hasLocation W231317771 @default.
- W23131777 hasOpenAccess W23131777 @default.
- W23131777 hasPrimaryLocation W231317771 @default.
- W23131777 hasRelatedWork W1504346515 @default.
- W23131777 hasRelatedWork W2026709669 @default.
- W23131777 hasRelatedWork W2152649386 @default.